1. Cell Biology
  2. Stem Cells and Regenerative Medicine
Download icon

C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool

  1. ChangHwan Lee
  2. Erika B Sorensen
  3. Tina R Lynch
  4. Judith Kimble  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Wisconsin-Madison, United States
  2. Wabash College, United States
  3. University of Wisconsin-Madison, United States
Research Article
  • Cited 34
  • Views 2,872
  • Annotations
Cite this article as: eLife 2016;5:e18370 doi: 10.7554/eLife.18370

Abstract

C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling.

Article and author information

Author details

  1. ChangHwan Lee

    Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erika B Sorensen

    Department of Biology, Wabash College, Crawfordsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tina R Lynch

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Judith Kimble

    Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
    For correspondence
    jekimble@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5622-2073

Funding

American Cancer Society (PF-14-147-01-DDC)

  • Erika B Sorensen

Howard Hughes Medical Institute

  • Judith Kimble

American Cancer Society (PF-14-147-01-DDC)

  • Erika B Sorensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Janet Rossant, University of Toronto, Canada

Publication history

  1. Received: June 1, 2016
  2. Accepted: October 4, 2016
  3. Accepted Manuscript published: October 5, 2016 (version 1)
  4. Version of Record published: November 3, 2016 (version 2)
  5. Version of Record updated: August 10, 2017 (version 3)

Copyright

© 2016, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,872
    Page views
  • 561
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Ziwei Yang et al.
    Research Article

    Upon viral RNA recognition, the RIG-I signalosome continuously generates IFNs and cytokines, leading to neutrophil recruitment and inflammation. Thus, attenuation of excessive immune and inflammatory responses is crucial to restore immune homeostasis and prevent unwarranted damage, yet few resolving mediators have been identified. In the present study, we demonstrated that RTN3 is strongly upregulated during RNA viral infection and acts as an inflammation-resolving regulator. Increased RTN3 aggregates on the endoplasmic reticulum and interacts with both TRIM25 and RIG-I, subsequently impairing K63-linked polyubiquitination and resulting in both IRF3 and NF-κB inhibition. Rtn3 overexpression in mice causes an obvious inflammation resolving phenomenon when challenged with VSV, Rtn3-overexpressing mice display significantly decreased neutrophil numbers and inflammatory cell infiltration, which is accompanied by reduced tissue edema in the liver and thinner alveolar interstitium. Taken together, our findings identify RTN3 as a conserved negative regulator of immune and inflammatory responses and provide insights into the negative feedback that maintains immune and inflammatory homeostasis.

    1. Cell Biology
    2. Developmental Biology
    Emir E Avilés-Pagán et al.
    Research Advance Updated

    Control of mRNA translation is a key mechanism by which the differentiated oocyte transitions to a totipotent embryo. In Drosophila, the PNG kinase complex regulates maternal mRNA translation at the oocyte-to-embryo transition. We previously showed that the GNU activating subunit is crucial in regulating PNG and timing its activity to the window between egg activation and early embryogenesis (Hara et al., 2017). In this study, we find associations between GNU and proteins of RNP granules and demonstrate that GNU localizes to cytoplasmic RNP granules in the mature oocyte, identifying GNU as a new component of a subset of RNP granules. Furthermore, we define roles for the domains of GNU. Interactions between GNU and the granule component BIC-C reveal potential conserved functions for translational regulation in metazoan development. We propose that by binding to BIC-C, upon egg activation GNU brings PNG to its initial targets, translational repressors in RNP granules.