C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool

  1. ChangHwan Lee
  2. Erika B Sorensen
  3. Tina R Lynch
  4. Judith Kimble  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Wisconsin-Madison, United States
  2. Wabash College, United States
  3. University of Wisconsin-Madison, United States

Abstract

C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling.

Article and author information

Author details

  1. ChangHwan Lee

    Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erika B Sorensen

    Department of Biology, Wabash College, Crawfordsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tina R Lynch

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Judith Kimble

    Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
    For correspondence
    jekimble@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5622-2073

Funding

American Cancer Society (PF-14-147-01-DDC)

  • Erika B Sorensen

Howard Hughes Medical Institute

  • Judith Kimble

American Cancer Society (PF-14-147-01-DDC)

  • Erika B Sorensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,758
    views
  • 721
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. ChangHwan Lee
  2. Erika B Sorensen
  3. Tina R Lynch
  4. Judith Kimble
(2016)
C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool
eLife 5:e18370.
https://doi.org/10.7554/eLife.18370

Share this article

https://doi.org/10.7554/eLife.18370

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.