Abstract

There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions.

Article and author information

Author details

  1. Moutusi Manna

    Department of Physics, Tampere University of Technology, Tampere, Finland
    Competing interests
    The authors declare that no competing interests exist.
  2. Miia Niemelä

    Department of Physics, Tampere University of Technology, Tampere, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Joona Tynkkynen

    Department of Physics, Tampere University of Technology, Tampere, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Matti Javanainen

    Department of Physics, Tampere University of Technology, Tampere, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4858-364X
  5. Waldemar Kulig

    Department of Physics, Tampere University of Technology, Tampere, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel J Müller

    Department of Biosystems Science and Engineering, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Tomasz Rog

    Department of Physics, Tampere University of Technology, Tampere, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Ilpo Vattulainen

    Department of Physics, Tampere University of Technology, Tampere, Finland
    For correspondence
    Ilpo.Vattulainen@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7408-3214

Funding

European Research Council (290974)

  • Moutusi Manna
  • Waldemar Kulig
  • Tomasz Rog
  • Ilpo Vattulainen

Academy of Finland (272130)

  • Moutusi Manna
  • Joona Tynkkynen
  • Matti Javanainen
  • Waldemar Kulig
  • Tomasz Rog
  • Ilpo Vattulainen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Version history

  1. Received: June 2, 2016
  2. Accepted: November 28, 2016
  3. Accepted Manuscript published: November 29, 2016 (version 1)
  4. Version of Record published: December 30, 2016 (version 2)

Copyright

© 2016, Manna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,876
    Page views
  • 860
    Downloads
  • 91
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moutusi Manna
  2. Miia Niemelä
  3. Joona Tynkkynen
  4. Matti Javanainen
  5. Waldemar Kulig
  6. Daniel J Müller
  7. Tomasz Rog
  8. Ilpo Vattulainen
(2016)
Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol
eLife 5:e18432.
https://doi.org/10.7554/eLife.18432

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Jiyu Xin, Yang Shi ... Xiaoling Xu
    Research Article

    Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Ashton J Curtis, Jian Zhu ... Matthew G Gold
    Research Article Updated

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.