Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

  1. Christine J Huh
  2. Bo Zhang
  3. Matheus Victor
  4. Sonika Dahiya
  5. Luis FZ Batista
  6. Steve Horvath
  7. Andrew S Yoo  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of California Los Angeles, United States

Abstract

Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Christine J Huh

    Program in Molecular and Cellular Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bo Zhang

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matheus Victor

    Program in Neuroscience, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sonika Dahiya

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Luis FZ Batista

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steve Horvath

    Department of Human Genetics, University of California Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew S Yoo

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    For correspondence
    yooa@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0304-3247

Funding

National Institutes of Health (DP2NS083372-01)

  • Andrew S Yoo

Ellison Medical Foundation (AG-NS-0878-12)

  • Andrew S Yoo

National Institutes of Health (K99/R00, 4R00HL114732-03)

  • Luis FZ Batista

Washington University in St. Louis (DDRCC, NIDDK P30 DK052574)

  • Luis FZ Batista

National Institutes of Health (1U34AG051425-01)

  • Steve Horvath

National Institutes of Health (5R01, AG042511-02)

  • Steve Horvath

National Institute on Drug Abuse (R25 DA027995)

  • Bo Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Huh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,291
    views
  • 1,367
    downloads
  • 152
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christine J Huh
  2. Bo Zhang
  3. Matheus Victor
  4. Sonika Dahiya
  5. Luis FZ Batista
  6. Steve Horvath
  7. Andrew S Yoo
(2016)
Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts
eLife 5:e18648.
https://doi.org/10.7554/eLife.18648

Share this article

https://doi.org/10.7554/eLife.18648

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Morgane Djebar, Isabelle Anselme ... Christine Vesque
    Research Article

    Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Laura Massoz, David Bergemann ... Isabelle Manfroid
    Research Article

    Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.