Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

  1. Christine J Huh
  2. Bo Zhang
  3. Matheus Victor
  4. Sonika Dahiya
  5. Luis FZ Batista
  6. Steve Horvath
  7. Andrew S Yoo  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of California Los Angeles, United States

Abstract

Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Christine J Huh

    Program in Molecular and Cellular Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bo Zhang

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matheus Victor

    Program in Neuroscience, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sonika Dahiya

    Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Luis FZ Batista

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steve Horvath

    Department of Human Genetics, University of California Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew S Yoo

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    For correspondence
    yooa@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0304-3247

Funding

National Institutes of Health (DP2NS083372-01)

  • Andrew S Yoo

Ellison Medical Foundation (AG-NS-0878-12)

  • Andrew S Yoo

National Institutes of Health (K99/R00, 4R00HL114732-03)

  • Luis FZ Batista

Washington University in St. Louis (DDRCC, NIDDK P30 DK052574)

  • Luis FZ Batista

National Institutes of Health (1U34AG051425-01)

  • Steve Horvath

National Institutes of Health (5R01, AG042511-02)

  • Steve Horvath

National Institute on Drug Abuse (R25 DA027995)

  • Bo Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy Nathans, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: June 9, 2016
  2. Accepted: September 15, 2016
  3. Accepted Manuscript published: September 20, 2016 (version 1)
  4. Version of Record published: October 17, 2016 (version 2)

Copyright

© 2016, Huh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,081
    Page views
  • 1,326
    Downloads
  • 135
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christine J Huh
  2. Bo Zhang
  3. Matheus Victor
  4. Sonika Dahiya
  5. Luis FZ Batista
  6. Steve Horvath
  7. Andrew S Yoo
(2016)
Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts
eLife 5:e18648.
https://doi.org/10.7554/eLife.18648

Share this article

https://doi.org/10.7554/eLife.18648

Further reading

    1. Developmental Biology
    Marta Grzonka, Hisham Bazzi
    Research Article

    SAS‑6 (SASS6) is essential for centriole formation in human cells and other organisms but its function in mouse is unclear. Here, we report that Sass6‑mutant mouse embryos lack centrioles, activate the mitotic surveillance cell death pathway and arrest at mid‑gestation. In contrast, SAS‑6 is not required for centriole formation in mouse embryonic stem cells (mESCs), but is essential to maintain centriole architecture. Of note, centrioles appeared after just one day of culture of Sass6‑mutant blastocysts, from which mESCs are derived. Conversely, the number of cells with centrosomes is drastically decreased upon the exit from a mESC pluripotent state. At the mechanistic level, the activity of the master kinase in centriole formation, PLK4, associated with increased centriolar and centrosomal protein levels, endow mESCs with the robustness in using SAS‑6‑independent centriole-duplication pathways. Collectively, our data suggest a differential requirement for mouse SAS‑6 in centriole formation or integrity depending on PLK4 and centrosome composition.

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.