Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex

Abstract

X-ray free electron lasers (XFELs) reduce the effects of radiation damage on macromolecular diffraction data and thereby extend the limiting resolution. Previously, we adapted classical post-refinement techniques to XFEL diffraction data to produce accurate diffraction data sets from a limited number of diffraction images (Uervirojnangkoorn et al., 2015), and went on to use these techniques to obtain a complete data set from crystals of the synaptotagmin-1 / SNARE complex and to determine the structure at 3.5 Å resolution (Zhou et al., 2015). Here, we describe new advances in our methods and present a reprocessed XFEL data set of the synaptotagmin-1 / SNARE complex. The reprocessing produced small improvements in electron density maps and the refined atomic model. The maps also contained more information than those of a lower resolution (4.1 Å) synchrotron data set. Processing a set of simulated XFEL diffraction images revealed that our methods yield accurate data and atomic models.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Artem Y Lyubimov

    Department of Molecular and Cellular Physiology, Stanford University Medical Center, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Monarin Uervirojnangkoorn

    Department of Molecular and Cellular Physiology, Stanford University Medical Center, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Oliver B Zeldin

    Department of Molecular and Cellular Physiology, Stanford University Medical Center, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Qiangjun Zhou

    Department of Molecular and Cellular Physiology, Stanford University Medical Center, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Minglei Zhao

    Department of Molecular and Cellular Physiology, Stanford University Medical Center, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Aaron S Brewster

    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Tara Michels-Clark

    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. James M Holton

    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Nicholas K Sauter

    Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. William I Weis

    Department of Molecular and Cellular Physiology, Stanford University Medical Center, Stanford, United States
    For correspondence
    weis@stanford.edu
    Competing interests
    William I Weis, Reviewing editor for eLife.
  11. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University Medical Center, Stanford, United States
    For correspondence
    brunger@stanford.edu
    Competing interests
    Axel T Brunger, Reviewing editor for eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5121-2036

Funding

Howard Hughes Medical Institute (Collaborative Innovation Award)

  • William I Weis
  • Axel T Brunger

National Institutes of Health (R01GM102520)

  • Nicholas K Sauter

National Institutes of Health (R01GM117126)

  • Nicholas K Sauter

National Institute of General Medical Sciences (P41 GM103403)

  • Axel T Brunger

National Institutes of Health (S10 RR029205)

  • Axel T Brunger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lyubimov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Artem Y Lyubimov
  2. Monarin Uervirojnangkoorn
  3. Oliver B Zeldin
  4. Qiangjun Zhou
  5. Minglei Zhao
  6. Aaron S Brewster
  7. Tara Michels-Clark
  8. James M Holton
  9. Nicholas K Sauter
  10. William I Weis
  11. Axel T Brunger
(2016)
Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
eLife 5:e18740.
https://doi.org/10.7554/eLife.18740

Share this article

https://doi.org/10.7554/eLife.18740

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.