An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation

  1. Max E Harner  Is a corresponding author
  2. Ann-Katrin Unger
  3. Willie JC Geerts
  4. Muriel Mari
  5. Toshiaki Izawa
  6. Maria Stenger
  7. Stefan Geimer
  8. Fulvio Reggiori
  9. Benedikt Westermann
  10. Walter Neupert  Is a corresponding author
  1. Max Planck Institute of Biochemistry, Germany
  2. Universität Bayreuth, Germany
  3. Universiteit Utrecht, Netherlands
  4. University of Groningen, Netherlands

Abstract

Metabolic function and architecture of mitochondria are intimately linked. More than 60 years ago, cristae were discovered as characteristic elements of mitochondria that harbor the protein complexes of oxidative phosphorylation, but how cristae are formed, remained an open question. Here we present experimental results obtained with yeast that support a novel hypothesis on the existence of two molecular pathways that lead to generation of lamellar and tubular cristae. Formation of lamellar cristae depends on the mitochondrial fusion machinery through a pathway that is required also for homeostasis of mitochondria and mitochondrial DNA. Tubular cristae are formed via invaginations of the inner boundary membrane by a pathway independent of the fusion machinery. Dimerization of the F1FO-ATP synthase and presence of the MICOS complex are necessary for both pathways. The proposed hypothesis is suggested to apply also to higher eukaryotes, since the key components are conserved in structure and function throughout evolution.

Article and author information

Author details

  1. Max E Harner

    Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    max.harner@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Ann-Katrin Unger

    Cell Biology and Electron Microscopy, Universität Bayreuth, Bayreuth, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Willie JC Geerts

    Biomolecular Imaging, Bijvoet Center, Universiteit Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Muriel Mari

    Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Toshiaki Izawa

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Stenger

    Cell Biology and Electron Microscopy, Universität Bayreuth, Bayreuth, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefan Geimer

    Cell Biology and Electron Microscopy, Universität Bayreuth, Bayreuth, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Fulvio Reggiori

    Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Benedikt Westermann

    Cell Biology and Electron Microscopy, Universität Bayreuth, Bayreuth, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2991-1604
  10. Walter Neupert

    Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    Neupert@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0571-4419

Funding

Max-Planck-Gesellschaft

  • Max E Harner
  • Ann-Katrin Unger
  • Toshiaki Izawa
  • Walter Neupert

Carl Friedrich von Siemens Stiftung

  • Walter Neupert

Jung-Stiftung für Wissenschaft und Forschung

  • Max E Harner

Ludwig-Maximilians-Universität München

  • Max E Harner

Netherlands organization for Scientific Research (DN82-303)

  • Fulvio Reggiori

Deutsche Forschungsgemeinschaft (DN82-303)

  • Fulvio Reggiori

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII3_154421)

  • Fulvio Reggiori

ZonMw (ZonMW VICI)

  • Fulvio Reggiori

Netherlands organization for Scientific Research (822.02.014)

  • Fulvio Reggiori

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Harner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,907
    views
  • 958
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Max E Harner
  2. Ann-Katrin Unger
  3. Willie JC Geerts
  4. Muriel Mari
  5. Toshiaki Izawa
  6. Maria Stenger
  7. Stefan Geimer
  8. Fulvio Reggiori
  9. Benedikt Westermann
  10. Walter Neupert
(2016)
An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation
eLife 5:e18853.
https://doi.org/10.7554/eLife.18853

Share this article

https://doi.org/10.7554/eLife.18853

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.