Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

Abstract

The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.

Data availability

The following data sets were generated
    1. Kuang MC
    2. Hittinger T
    (2016) RNA-Seq of Saccharomyces uvarum
    Publicly available at the NCBI Short Read Archive (accession no: SRP077015).

Article and author information

Author details

  1. Meihua Christina Kuang

    Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3206-6525
  2. Paul D Hutchins

    Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jason D Russell

    Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joshua J Coon

    Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chris Todd Hittinger

    Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
    For correspondence
    cthittinger@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5088-7461

Funding

National Science Foundation (DEB-1253634 , DEB-1442148)

  • Chris Todd Hittinger

National Institute of Food and Agriculture (Hatch Project 1003258)

  • Chris Todd Hittinger

DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494)

  • Joshua J Coon
  • Chris Todd Hittinger

Pew Charitable Trusts (Pew Scholar in the Biomedical Sciences)

  • Chris Todd Hittinger

Alexander von Humboldt-Stiftung (Alfred Toepfer Faculty Fellow)

  • Chris Todd Hittinger

National Institutes of Health (R35 GM118110)

  • Joshua J Coon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Kuang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,290
    views
  • 509
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meihua Christina Kuang
  2. Paul D Hutchins
  3. Jason D Russell
  4. Joshua J Coon
  5. Chris Todd Hittinger
(2016)
Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network
eLife 5:e19027.
https://doi.org/10.7554/eLife.19027

Share this article

https://doi.org/10.7554/eLife.19027

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.