TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls

  1. Matyáš Fendrych
  2. Jeffrey Leung
  3. Jiří Friml  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, France

Abstract

Despite being composed of immobile cells, plants reorient along directional stimuli. The hormone auxin is redistributed in stimulated organs leading to differential growth and bending. Auxin application triggers rapid cell wall acidification and elongation of aerial organs of plants, but the molecular players mediating these effects are still controversial. Here we use genetically-encoded pH and auxin signaling sensors, pharmacological and genetic manipulations available for Arabidopsis etiolated hypocotyls to clarify how auxin is perceived and the downstream growth executed. We show that auxin-induced acidification occurs by local activation of H+-ATPases, which in the context of gravity response is restricted to the lower organ side. This auxin-stimulated acidification and growth require TIR1/AFB-Aux/IAA nuclear auxin perception. In addition, auxin-induced gene transcription and specifically SAUR proteins are crucial downstream mediators of this growth. Our study provides strong experimental support for the acid growth theory and clarified the contribution of the upstream auxin perception mechanisms.

Article and author information

Author details

  1. Matyáš Fendrych

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey Leung

    Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiří Friml

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    jiri.friml@ist.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8302-7596

Funding

European Research Council (project ERC-2011-StG-20101109-PSDP)

  • Jiří Friml

Marie Curie Actions FP7 2007-2013 (REA grant agreement n.291734)

  • Matyáš Fendrych

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Fendrych et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,136
    views
  • 1,862
    downloads
  • 163
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matyáš Fendrych
  2. Jeffrey Leung
  3. Jiří Friml
(2016)
TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls
eLife 5:e19048.
https://doi.org/10.7554/eLife.19048

Share this article

https://doi.org/10.7554/eLife.19048

Further reading

    1. Cell Biology
    Dominik Brokatzky, Serge Mostowy
    Insight

    Cytoskeleton rearrangements promote formation of a giant structure called a GUVac that stops cells from dying when they become detached from the extracellular matrix.

    1. Cell Biology
    2. Neuroscience
    Justin Lines, Andres Baraibar ... Alfonso Araque
    Research Article

    Astrocytes are active cells involved in brain function through the bidirectional communication with neurons, in which astrocyte calcium plays a crucial role. Synaptically evoked calcium increases can be localized to independent subcellular domains or expand to the entire cell, i.e., calcium surge. Because a single astrocyte may contact ~100,000 synapses, the control of the intracellular calcium signal propagation may have relevant consequences on brain function. Yet, the properties governing the spatial dynamics of astrocyte calcium remains poorly defined. Imaging subcellular responses of cortical astrocytes to sensory stimulation in mice, we show that sensory-evoked astrocyte calcium responses originated and remained localized in domains of the astrocytic arborization, but eventually propagated to the entire cell if a spatial threshold of >23% of the arborization being activated was surpassed. Using Itpr2-/- mice, we found that type-2 IP3 receptors were necessary for the generation of astrocyte calcium surge. We finally show using in situ electrophysiological recordings that the spatial threshold of the astrocyte calcium signal consequently determined the gliotransmitter release. Present results reveal a fundamental property of astrocyte physiology, i.e., a spatial threshold for astrocyte calcium propagation, which depends on astrocyte intrinsic properties and governs astrocyte integration of local synaptic activity and subsequent neuromodulation.