Two subunits of human ORC are dispensable for DNA replication and proliferation

  1. Etsuko Shibata
  2. Manjari Kiran
  3. Yoshiyuki Shibata
  4. Samarendra Singh
  5. Shashi Kiran
  6. Anindya Dutta  Is a corresponding author
  1. University of Virginia School of Medicine, United States

Abstract

The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1. The ORC1 or ORC2-depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication

Data availability

The following data sets were generated

Article and author information

Author details

  1. Etsuko Shibata

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Manjari Kiran

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoshiyuki Shibata

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samarendra Singh

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shashi Kiran

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anindya Dutta

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    For correspondence
    ad8q@eservices.virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4319-0073

Funding

National Institutes of Health (CA060499)

  • Anindya Dutta

National Institutes of Health (CA166054)

  • Anindya Dutta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Shibata et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,415
    views
  • 737
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Etsuko Shibata
  2. Manjari Kiran
  3. Yoshiyuki Shibata
  4. Samarendra Singh
  5. Shashi Kiran
  6. Anindya Dutta
(2016)
Two subunits of human ORC are dispensable for DNA replication and proliferation
eLife 5:e19084.
https://doi.org/10.7554/eLife.19084

Share this article

https://doi.org/10.7554/eLife.19084

Further reading

    1. Cell Biology
    2. Neuroscience
    Victor C Wong, Patrick R Houlihan ... Erin K O'Shea
    Research Article

    AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.