Two subunits of human ORC are dispensable for DNA replication and proliferation

  1. Etsuko Shibata
  2. Manjari Kiran
  3. Yoshiyuki Shibata
  4. Samarendra Singh
  5. Shashi Kiran
  6. Anindya Dutta  Is a corresponding author
  1. University of Virginia School of Medicine, United States

Abstract

The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1. The ORC1 or ORC2-depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication

Data availability

The following data sets were generated

Article and author information

Author details

  1. Etsuko Shibata

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Manjari Kiran

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoshiyuki Shibata

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samarendra Singh

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shashi Kiran

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anindya Dutta

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    For correspondence
    ad8q@eservices.virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4319-0073

Funding

National Institutes of Health (CA060499)

  • Anindya Dutta

National Institutes of Health (CA166054)

  • Anindya Dutta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Shibata et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,523
    views
  • 749
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Etsuko Shibata
  2. Manjari Kiran
  3. Yoshiyuki Shibata
  4. Samarendra Singh
  5. Shashi Kiran
  6. Anindya Dutta
(2016)
Two subunits of human ORC are dispensable for DNA replication and proliferation
eLife 5:e19084.
https://doi.org/10.7554/eLife.19084

Share this article

https://doi.org/10.7554/eLife.19084

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Deb Sankar Banerjee, Shiladitya Banerjee
    Research Article

    Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.