Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx

  1. Jacqueline M Tabler
  2. Maggie M Rigney
  3. Gordon J Berman
  4. Swetha Gopalakrishnan
  5. Eglantine Heude
  6. Hadeel A Al-Lami
  7. Basil Z Yannakoudakis
  8. Rebecca D Fitch
  9. Christopher M Carter
  10. Steven A Vokes
  11. Karen J Liu
  12. Shahragim Tajbakhsh
  13. SE Roian Egnor
  14. John B Wallingford  Is a corresponding author
  1. University of Texas at Austin, United States
  2. Emory University, United States
  3. CNRS UMR3738, Institut Pasteur, France
  4. King's College London, United Kingdom
  5. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights in the molecular genetics of form and function in the mammalian vocal apparatus.

Article and author information

Author details

  1. Jacqueline M Tabler

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maggie M Rigney

    Department of Molecular Biosciencesc, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gordon J Berman

    Department of Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Swetha Gopalakrishnan

    Stem Cells and Development, CNRS UMR3738, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Eglantine Heude

    Stem Cells and Development, CNRS UMR3738, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Hadeel A Al-Lami

    Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Basil Z Yannakoudakis

    Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca D Fitch

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher M Carter

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Steven A Vokes

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Karen J Liu

    Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Shahragim Tajbakhsh

    Stem Cells and Development, CNRS UMR3738, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. SE Roian Egnor

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John B Wallingford

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    For correspondence
    wallingford@austin.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6280-8625

Funding

Howard Hughes Medical Institute

  • SE Roian Egnor
  • John B Wallingford

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Didier YR Stainier, Max Planck Institute for Heart and Lung Research, Germany

Ethics

Animal experimentation: This work was performed by protocols approved by UT Austin (IACUC protocol # AUP-2015-00105) and by King's College London (Animal Use Protocol PPL 70/7441).

Version history

  1. Received: June 27, 2016
  2. Accepted: February 6, 2017
  3. Accepted Manuscript published: February 8, 2017 (version 1)
  4. Accepted Manuscript updated: February 13, 2017 (version 2)
  5. Version of Record published: March 20, 2017 (version 3)
  6. Version of Record updated: November 22, 2017 (version 4)

Copyright

© 2017, Tabler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,619
    views
  • 777
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacqueline M Tabler
  2. Maggie M Rigney
  3. Gordon J Berman
  4. Swetha Gopalakrishnan
  5. Eglantine Heude
  6. Hadeel A Al-Lami
  7. Basil Z Yannakoudakis
  8. Rebecca D Fitch
  9. Christopher M Carter
  10. Steven A Vokes
  11. Karen J Liu
  12. Shahragim Tajbakhsh
  13. SE Roian Egnor
  14. John B Wallingford
(2017)
Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx
eLife 6:e19153.
https://doi.org/10.7554/eLife.19153

Share this article

https://doi.org/10.7554/eLife.19153

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.