Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx

  1. Jacqueline M Tabler
  2. Maggie M Rigney
  3. Gordon J Berman
  4. Swetha Gopalakrishnan
  5. Eglantine Heude
  6. Hadeel Adel Al-Lami
  7. Basil Z Yannakoudakis
  8. Rebecca D Fitch
  9. Christopher M Carter
  10. Steven A Vokes
  11. Karen J Liu
  12. Shahragim Tajbakhsh
  13. SE Roian Egnor
  14. John B Wallingford  Is a corresponding author
  1. University of Texas at Austin, United States
  2. Emory University, United States
  3. CNRS UMR3738, Institut Pasteur, France
  4. King's College London, United Kingdom
  5. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights in the molecular genetics of form and function in the mammalian vocal apparatus.

Article and author information

Author details

  1. Jacqueline M Tabler

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maggie M Rigney

    Department of Molecular Biosciencesc, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gordon J Berman

    Department of Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Swetha Gopalakrishnan

    Stem Cells and Development, CNRS UMR3738, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Eglantine Heude

    Stem Cells and Development, CNRS UMR3738, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Hadeel Adel Al-Lami

    Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Basil Z Yannakoudakis

    Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca D Fitch

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher M Carter

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Steven A Vokes

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Karen J Liu

    Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Shahragim Tajbakhsh

    Stem Cells and Development, CNRS UMR3738, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. SE Roian Egnor

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John B Wallingford

    Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
    For correspondence
    wallingford@austin.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6280-8625

Funding

Howard Hughes Medical Institute

  • SE Roian Egnor
  • John B Wallingford

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Didier YR Stainier, Max Planck Institute for Heart and Lung Research, Germany

Ethics

Animal experimentation: This work was performed by protocols approved by UT Austin (IACUC protocol # AUP-2015-00105) and by King's College London (Animal Use Protocol PPL 70/7441).

Version history

  1. Received: June 27, 2016
  2. Accepted: February 6, 2017
  3. Accepted Manuscript published: February 8, 2017 (version 1)
  4. Accepted Manuscript updated: February 13, 2017 (version 2)
  5. Version of Record published: March 20, 2017 (version 3)
  6. Version of Record updated: November 22, 2017 (version 4)

Copyright

© 2017, Tabler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,565
    Page views
  • 772
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacqueline M Tabler
  2. Maggie M Rigney
  3. Gordon J Berman
  4. Swetha Gopalakrishnan
  5. Eglantine Heude
  6. Hadeel Adel Al-Lami
  7. Basil Z Yannakoudakis
  8. Rebecca D Fitch
  9. Christopher M Carter
  10. Steven A Vokes
  11. Karen J Liu
  12. Shahragim Tajbakhsh
  13. SE Roian Egnor
  14. John B Wallingford
(2017)
Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx
eLife 6:e19153.
https://doi.org/10.7554/eLife.19153

Share this article

https://doi.org/10.7554/eLife.19153

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.