Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana

  1. Urszula Piskurewicz
  2. Mayumi Iwasaki
  3. Daichi Susaki
  4. Christian Megies
  5. Tetsu Kinoshita
  6. Luis Lopez-Molina  Is a corresponding author
  1. University of Geneva, Switzerland
  2. Yokohama City University, Japan

Abstract

Mature seed dormancy is a vital plant trait preventing germination out of season. In Arabidopsis, the trait can be maternally regulated but the underlying mechanisms sustaining this regulation, its general occurrence and biological significance among accessions is poorly understood. Upon seed imbibition, the endosperm is essential to repress germination of dormant seeds. Investigation of genomic imprinting in the mature seed endosperm led us to identify a novel set of imprinted genes expressed upon seed imbibition. Remarkably, programs of imprinted gene expression are adapted according to the dormancy status of the seed. We provide direct evidence that imprinted genes play a role to regulate germination processes and that preferential maternal allelic expression can implement maternal inheritance of seed dormancy levels.

Article and author information

Author details

  1. Urszula Piskurewicz

    Department of Plant Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Mayumi Iwasaki

    Department of Plant Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Daichi Susaki

    Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Megies

    Department of Plant Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Tetsu Kinoshita

    Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Luis Lopez-Molina

    Department of Plant Biology, University of Geneva, Geneva, Switzerland
    For correspondence
    Luis.LopezMolina@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9523-9123

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

  • Urszula Piskurewicz
  • Mayumi Iwasaki
  • Christian Megies
  • Luis Lopez-Molina

Grant in Aid for Scientific Research on innovative area (16H06465,16H06464,and 16K21727)

  • Daichi Susaki
  • Tetsu Kinoshita

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daniel Zilberman, University of California, Berkeley, United States

Publication history

  1. Received: July 12, 2016
  2. Accepted: December 21, 2016
  3. Accepted Manuscript published: December 22, 2016 (version 1)
  4. Accepted Manuscript updated: December 28, 2016 (version 2)
  5. Version of Record published: January 18, 2017 (version 3)
  6. Version of Record updated: August 17, 2017 (version 4)

Copyright

© 2016, Piskurewicz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,004
    Page views
  • 764
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Urszula Piskurewicz
  2. Mayumi Iwasaki
  3. Daichi Susaki
  4. Christian Megies
  5. Tetsu Kinoshita
  6. Luis Lopez-Molina
(2016)
Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana
eLife 5:e19573.
https://doi.org/10.7554/eLife.19573

Further reading

    1. Computational and Systems Biology
    2. Plant Biology
    Ruth Großeholz, Friederike Wanke ... Klaus Harter
    Research Article Updated

    Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.

    1. Plant Biology
    Therese LaRue, Heike Lindner ... José R Dinneny
    Tools and Resources Updated

    The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions’ respective origins.