Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending
Abstract
Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division.
Data availability
-
Crystal structure of XerH site-specific recombinase bound to difH substrate: pre-cleavage complexPublicly available at the RCSB Protein Data Bank (accession no: 5JK0).
-
Crystal structure of XerH site-specific recombinase bound to palindromic difH substrate: post-cleavage complexPublicly available at the RCSB Protein Data Bank (accession no: 5JJV).
Article and author information
Author details
Funding
European Molecular Biology Laboratory (Intramural Funds)
- Aleksandra Bebel
- Ezgi Karaca
- Banushree Kumar
- Orsolya Barabas
Alexander von Humboldt-Stiftung (Postdoctoral Fellowship)
- Ezgi Karaca
EMBL International PhD Programme (Graduate Student Fellowship)
- Aleksandra Bebel
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2016, Bebel et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,359
- views
-
- 348
- downloads
-
- 18
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 18
- citations for umbrella DOI https://doi.org/10.7554/eLife.19706