TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau

  1. Maxime WC Rousseaux
  2. Maria de Haro
  3. Cristian A Lasagna-Reeves
  4. Antonia De Maio
  5. Jeehye Park
  6. Paymaan Jafar-Nejad
  7. Ismael Al-Ramahi
  8. Ajay Sharma
  9. Lauren See
  10. Nan Lu
  11. Luis Vilanova-Velez
  12. Tiemo J Klisch
  13. Thomas F Westbrook
  14. Juan C Troncoso
  15. Juan Botas
  16. Huda Y Zoghbi  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Texas Children's Hospital, United States
  3. The University of Toronto, Canada
  4. Ionis Pharmaceuticals, United States
  5. Johns Hopkins University School of Medicine, United States

Abstract

Several neurodegenerative diseases are driven by the toxic gain-of-function of specific proteins within the brain. Elevated levels of alpha-synuclein (α-Syn) appear to drive neurotoxicity in Parkinson's disease (PD); neuronal accumulation of tau is a hallmark of Alzheimer's disease (AD); and their increased levels cause neurodegeneration in humans and model organisms. Despite the clinical differences between AD and PD, several lines of evidence suggest that α-Syn and tau overlap pathologically. The connections between α-Syn and tau led us to ask whether these proteins might be regulated through a shared pathway. We therefore screened for genes that affect post-translational levels of α-Syn and tau. We found that TRIM28 regulates α-Syn and tau levels and that its reduction rescues toxicity in animal models of tau- and α-Syn-mediated degeneration. TRIM28 stabilizes and promotes the nuclear accumulation and toxicity of both proteins. Intersecting screens across comorbid proteinopathies thus reveal shared mechanisms and therapeutic entry points.

Article and author information

Author details

  1. Maxime WC Rousseaux

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Maria de Haro

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  3. Cristian A Lasagna-Reeves

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  4. Antonia De Maio

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  5. Jeehye Park

    Program in Genetics and Genome Biology, The Hospital for Sick Children, The University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  6. Paymaan Jafar-Nejad

    Ionis Pharmaceuticals, Carlsbad, United States
    Competing interests
    No competing interests declared.
  7. Ismael Al-Ramahi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  8. Ajay Sharma

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Lauren See

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  10. Nan Lu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  11. Luis Vilanova-Velez

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  12. Tiemo J Klisch

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  13. Thomas F Westbrook

    Department of Molecular and Human Genetics, Baylor College of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  14. Juan C Troncoso

    Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  15. Juan Botas

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  16. Huda Y Zoghbi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0700-3349

Funding

Howard Hughes Medical Institute

  • Huda Y Zoghbi

Michael J. Fox Foundation for Parkinson's Research (Target Validation Program 2014)

  • Huda Y Zoghbi

Canadian Institutes of Health Research (201210MFE-290072-173743)

  • Maxime WC Rousseaux

National Institutes of Health (1K22NS092688-01)

  • Cristian A Lasagna-Reeves

National Institutes of Health (U54 HD083092)

  • Huda Y Zoghbi

National Institutes of Health (P50 NS38377)

  • Juan C Troncoso

National Institutes of Health (P50 AG05146)

  • Juan C Troncoso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Susan L Ackerman, Howard Hughes Medical Institute, University of California, San Diego, United States

Ethics

Animal experimentation: Up to five mice were housed per cage and kept on a 12 h light; 12 h dark cycle and were given water and standard rodent chow ad libitum. All procedures carried out in mice were approved by the Institutional Animal Care and Use Committee for Baylor College of Medicine and Affiliates.

Human subjects: Tissue from patients with PD, AD, PSP and control subjects were obtained from the Neuropathology Core at the Johns Hopkins Udall Centre. Tissue was obtained from consenting donors and use conformed to JHMI Institutional Review Board approved protocols.

Version history

  1. Received: July 20, 2016
  2. Accepted: October 12, 2016
  3. Accepted Manuscript published: October 25, 2016 (version 1)
  4. Version of Record published: November 10, 2016 (version 2)

Copyright

© 2016, Rousseaux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,004
    Page views
  • 1,534
    Downloads
  • 77
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime WC Rousseaux
  2. Maria de Haro
  3. Cristian A Lasagna-Reeves
  4. Antonia De Maio
  5. Jeehye Park
  6. Paymaan Jafar-Nejad
  7. Ismael Al-Ramahi
  8. Ajay Sharma
  9. Lauren See
  10. Nan Lu
  11. Luis Vilanova-Velez
  12. Tiemo J Klisch
  13. Thomas F Westbrook
  14. Juan C Troncoso
  15. Juan Botas
  16. Huda Y Zoghbi
(2016)
TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau
eLife 5:e19809.
https://doi.org/10.7554/eLife.19809

Share this article

https://doi.org/10.7554/eLife.19809

Further reading

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.