TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau

  1. Maxime WC Rousseaux
  2. Maria de Haro
  3. Cristian A Lasagna-Reeves
  4. Antonia De Maio
  5. Jeehye Park
  6. Paymaan Jafar-Nejad
  7. Ismael Al-Ramahi
  8. Ajay Sharma
  9. Lauren See
  10. Nan Lu
  11. Luis Vilanova-Velez
  12. Tiemo J Klisch
  13. Thomas F Westbrook
  14. Juan C Troncoso
  15. Juan Botas
  16. Huda Y Zoghbi  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Texas Children's Hospital, United States
  3. The University of Toronto, Canada
  4. Ionis Pharmaceuticals, United States
  5. Johns Hopkins University School of Medicine, United States

Abstract

Several neurodegenerative diseases are driven by the toxic gain-of-function of specific proteins within the brain. Elevated levels of alpha-synuclein (α-Syn) appear to drive neurotoxicity in Parkinson's disease (PD); neuronal accumulation of tau is a hallmark of Alzheimer's disease (AD); and their increased levels cause neurodegeneration in humans and model organisms. Despite the clinical differences between AD and PD, several lines of evidence suggest that α-Syn and tau overlap pathologically. The connections between α-Syn and tau led us to ask whether these proteins might be regulated through a shared pathway. We therefore screened for genes that affect post-translational levels of α-Syn and tau. We found that TRIM28 regulates α-Syn and tau levels and that its reduction rescues toxicity in animal models of tau- and α-Syn-mediated degeneration. TRIM28 stabilizes and promotes the nuclear accumulation and toxicity of both proteins. Intersecting screens across comorbid proteinopathies thus reveal shared mechanisms and therapeutic entry points.

Article and author information

Author details

  1. Maxime WC Rousseaux

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Maria de Haro

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  3. Cristian A Lasagna-Reeves

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  4. Antonia De Maio

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  5. Jeehye Park

    Program in Genetics and Genome Biology, The Hospital for Sick Children, The University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  6. Paymaan Jafar-Nejad

    Ionis Pharmaceuticals, Carlsbad, United States
    Competing interests
    No competing interests declared.
  7. Ismael Al-Ramahi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  8. Ajay Sharma

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Lauren See

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  10. Nan Lu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  11. Luis Vilanova-Velez

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  12. Tiemo J Klisch

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  13. Thomas F Westbrook

    Department of Molecular and Human Genetics, Baylor College of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  14. Juan C Troncoso

    Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  15. Juan Botas

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  16. Huda Y Zoghbi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0700-3349

Funding

Howard Hughes Medical Institute

  • Huda Y Zoghbi

Michael J. Fox Foundation for Parkinson's Research (Target Validation Program 2014)

  • Huda Y Zoghbi

Canadian Institutes of Health Research (201210MFE-290072-173743)

  • Maxime WC Rousseaux

National Institutes of Health (1K22NS092688-01)

  • Cristian A Lasagna-Reeves

National Institutes of Health (U54 HD083092)

  • Huda Y Zoghbi

National Institutes of Health (P50 NS38377)

  • Juan C Troncoso

National Institutes of Health (P50 AG05146)

  • Juan C Troncoso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Up to five mice were housed per cage and kept on a 12 h light; 12 h dark cycle and were given water and standard rodent chow ad libitum. All procedures carried out in mice were approved by the Institutional Animal Care and Use Committee for Baylor College of Medicine and Affiliates.

Human subjects: Tissue from patients with PD, AD, PSP and control subjects were obtained from the Neuropathology Core at the Johns Hopkins Udall Centre. Tissue was obtained from consenting donors and use conformed to JHMI Institutional Review Board approved protocols.

Reviewing Editor

  1. Susan L Ackerman, Howard Hughes Medical Institute, University of California, San Diego, United States

Version history

  1. Received: July 20, 2016
  2. Accepted: October 12, 2016
  3. Accepted Manuscript published: October 25, 2016 (version 1)
  4. Version of Record published: November 10, 2016 (version 2)

Copyright

© 2016, Rousseaux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,947
    Page views
  • 1,527
    Downloads
  • 76
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime WC Rousseaux
  2. Maria de Haro
  3. Cristian A Lasagna-Reeves
  4. Antonia De Maio
  5. Jeehye Park
  6. Paymaan Jafar-Nejad
  7. Ismael Al-Ramahi
  8. Ajay Sharma
  9. Lauren See
  10. Nan Lu
  11. Luis Vilanova-Velez
  12. Tiemo J Klisch
  13. Thomas F Westbrook
  14. Juan C Troncoso
  15. Juan Botas
  16. Huda Y Zoghbi
(2016)
TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau
eLife 5:e19809.
https://doi.org/10.7554/eLife.19809

Share this article

https://doi.org/10.7554/eLife.19809

Further reading

    1. Neuroscience
    E Nicholas Petersen, Mahmud Arif Pavel ... Scott B Hansen
    Research Article

    Rapid conversion of force into a biological signal enables living cells to respond to mechanical forces in their environment. The force is believed to initially affect the plasma membrane and then alter the behavior of membrane proteins. Phospholipase D2 (PLD2) is a mechanosensitive enzyme that is regulated by a structured membrane-lipid site comprised of cholesterol and saturated ganglioside (GM1). Here we show stretch activation of TWIK-related K+ channel (TREK-1) is mechanically evoked by PLD2 and spatial patterning involving ordered GM1 and 4,5-bisphosphate (PIP2) clusters in mammalian cells. First, mechanical force deforms the ordered lipids, which disrupts the interaction of PLD2 with the GM1 lipids and allows a complex of TREK-1 and PLD2 to associate with PIP2 clusters. The association with PIP2 activates the enzyme, which produces the second messenger phosphatidic acid (PA) that gates the channel. Co-expression of catalytically inactive PLD2 inhibits TREK-1 stretch currents in a biological membrane. Cellular uptake of cholesterol inhibits TREK-1 currents in culture and depletion of cholesterol from astrocytes releases TREK-1 from GM1 lipids in mouse brain. Depletion of the PLD2 ortholog in flies results in hypersensitivity to mechanical force. We conclude PLD2 mechanosensitivity combines with TREK-1 ion permeability to elicit a mechanically evoked response.

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.