The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status

  1. Dongming Li
  2. Ana Marie S Palanca
  3. So Youn Won
  4. Lei Gao
  5. Ying Feng
  6. Ajay A Vashisht
  7. Li Liu
  8. Yuanyuan Zhao
  9. Xigang Liu
  10. Xiuyun Wu
  11. Shaofang Li
  12. Brandon Le
  13. Yun Ju Kim
  14. Guodong Yang
  15. Shengben Li
  16. Jinyuan Liu
  17. James A Wohlschlegel
  18. Hongwei Guo
  19. Beixin Mo
  20. Xuemei Chen  Is a corresponding author
  21. Julie A Law  Is a corresponding author
  1. University of California, Riverside, United States
  2. Salk Institute for Biological Studies, United States
  3. Rural Development Administration, Republic of Korea
  4. David Geffen School of Medicine at UCLA, United States
  5. Tsinghua University, China
  6. Peking University, China
  7. Shenzhen University, China

Abstract

DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Dongming Li

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ana Marie S Palanca

    Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. So Youn Won

    National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Lei Gao

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ying Feng

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ajay A Vashisht

    Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Li Liu

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuanyuan Zhao

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xigang Liu

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiuyun Wu

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Shaofang Li

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Brandon Le

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Yun Ju Kim

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Guodong Yang

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Shengben Li

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jinyuan Liu

    Laboratory of Molecular Biology and Protein Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  17. James A Wohlschlegel

    Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Hongwei Guo

    State Key Laboratory of Protein and Plant Gene research, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Beixin Mo

    College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Xuemei Chen

    Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
    For correspondence
    xuemei.chen@ucr.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5209-1157
  21. Julie A Law

    Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    jlaw@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7472-7753

Funding

Gordon and Betty Moore Foundation (GBMF3046)

  • Xuemei Chen

National Science Foundation of China (91440105)

  • Xuemei Chen

National Science Foundation of China (30970265)

  • Beixin Mo

National Science Foundation of China (31210103901)

  • Beixin Mo

Guangdong Innovation Research Team Fund (2014ZT05S078)

  • Xuemei Chen

National Institutes of Health (GM061146)

  • Xuemei Chen

National Academy of Agricultural Science (PJ008725)

  • So Youn Won

China Scholarship Council

  • Dongming Li

Glenn Center for Aging Research at the Salk Institute

  • Ana Marie S Palanca

Helmsley Charitable Trust

  • Ana Marie S Palanca
  • Julie A Law

National Institutes of Health (GM112966)

  • Julie A Law

National Institutes of Health (GM089778)

  • James A Wohlschlegel

National Institutes of Health (P30 014195)

  • Ana Marie S Palanca
  • Julie A Law

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,880
    views
  • 761
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dongming Li
  2. Ana Marie S Palanca
  3. So Youn Won
  4. Lei Gao
  5. Ying Feng
  6. Ajay A Vashisht
  7. Li Liu
  8. Yuanyuan Zhao
  9. Xigang Liu
  10. Xiuyun Wu
  11. Shaofang Li
  12. Brandon Le
  13. Yun Ju Kim
  14. Guodong Yang
  15. Shengben Li
  16. Jinyuan Liu
  17. James A Wohlschlegel
  18. Hongwei Guo
  19. Beixin Mo
  20. Xuemei Chen
  21. Julie A Law
(2017)
The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status
eLife 6:e19893.
https://doi.org/10.7554/eLife.19893

Share this article

https://doi.org/10.7554/eLife.19893

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Augusto Berrocal, Nicholas C Lammers ... Michael B Eisen
    Research Advance

    Transcription often occurs in bursts as gene promoters switch stochastically between active and inactive states. Enhancers can dictate transcriptional activity in animal development through the modulation of burst frequency, duration, or amplitude. Previous studies observed that different enhancers can achieve a wide range of transcriptional outputs through the same strategies of bursting control. For example, in Berrocal et al., 2020, we showed that despite responding to different transcription factors, all even-skipped enhancers increase transcription by upregulating burst frequency and amplitude while burst duration remains largely constant. These shared bursting strategies suggest that a unified molecular mechanism constraints how enhancers modulate transcriptional output. Alternatively, different enhancers could have converged on the same bursting control strategy because of natural selection favoring one of these particular strategies. To distinguish between these two scenarios, we compared transcriptional bursting between endogenous and ectopic gene expression patterns. Because enhancers act under different regulatory inputs in ectopic patterns, dissimilar bursting control strategies between endogenous and ectopic patterns would suggest that enhancers adapted their bursting strategies to their trans-regulatory environment. Here, we generated ectopic even-skipped transcription patterns in fruit fly embryos and discovered that bursting strategies remain consistent in endogenous and ectopic even-skipped expression. These results provide evidence for a unified molecular mechanism shaping even-skipped bursting strategies and serve as a starting point to uncover the realm of strategies employed by other enhancers.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Marius Regin, Yingnan Lei ... Claudia Spits
    Research Article

    About 70% of human cleavage stage embryos show chromosomal mosaicism, falling to 20% in blastocysts. Chromosomally mosaic human blastocysts can implant and lead to healthy new-borns with normal karyotypes. Studies in mouse embryos and human gastruloids showed that aneuploid cells are eliminated from the epiblast by p53-mediated apoptosis while being tolerated in the trophectoderm. These observations suggest a selective loss of aneuploid cells from human embryos, but the underlying mechanisms are not yet fully understood. Here, we investigated the cellular consequences of aneuploidy in a total of 125 human blastocysts. RNA-sequencing of trophectoderm cells showed activated p53 pathway and apoptosis proportionate to the level of chromosomal imbalance. Immunostaining corroborated that aneuploidy triggers proteotoxic stress, autophagy, p53-signaling, and apoptosis independent from DNA damage. Total cell numbers were lower in aneuploid embryos, due to a decline both in trophectoderm and in epiblast/primitive endoderm cell numbers. While lower cell numbers in trophectoderm may be attributed to apoptosis, aneuploidy impaired the second lineage segregation, particularly primitive endoderm formation. This might be reinforced by retention of NANOG. Our findings might explain why fully aneuploid embryos fail to further develop and we hypothesize that the same mechanisms lead to the removal of aneuploid cells from mosaic embryos.