The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status
Abstract
DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing.
Data availability
-
LIL, an α-crystallin/Heat Shock Protein 20 family protein, associates with the Methyl -CpG-Binding Domain protein MBD7 to suppress cytosine methylation and transcriptional gene silencing in Arabidopsis (mRNA-seq)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE83557).
-
LIL, an α-crystallin/Heat Shock Protein 20 family protein, associates with the Methyl -CpG-Binding Domain protein MBD7 to suppress cytosine methylation and transcriptional gene silencing in Arabidopsis (smallRNA-seq)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE59639).
-
LIL, an α-crystallin/Heat Shock Protein 20 family protein, associates with the Methyl -CpG-Binding Domain protein MBD7 to suppress cytosine methylation and transcriptional gene silencing in ArabidopsisPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE83355).
Article and author information
Author details
Funding
Gordon and Betty Moore Foundation (GBMF3046)
- Xuemei Chen
National Science Foundation of China (91440105)
- Xuemei Chen
National Science Foundation of China (30970265)
- Beixin Mo
National Science Foundation of China (31210103901)
- Beixin Mo
Guangdong Innovation Research Team Fund (2014ZT05S078)
- Xuemei Chen
National Institutes of Health (GM061146)
- Xuemei Chen
National Academy of Agricultural Science (PJ008725)
- So Youn Won
China Scholarship Council
- Dongming Li
Glenn Center for Aging Research at the Salk Institute
- Ana Marie S Palanca
Helmsley Charitable Trust
- Ana Marie S Palanca
- Julie A Law
National Institutes of Health (GM112966)
- Julie A Law
National Institutes of Health (GM089778)
- James A Wohlschlegel
National Institutes of Health (P30 014195)
- Ana Marie S Palanca
- Julie A Law
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Li et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,924
- views
-
- 768
- downloads
-
- 21
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.
-
- Chromosomes and Gene Expression
- Genetics and Genomics
A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.