Methylated cis-regulatory elements mediate KLF4-denpendent gene transactivation and cell migration

  1. Jun Wan
  2. Yijing Su
  3. Qifeng Song
  4. Brian Tung
  5. Olutobi Oyinlade
  6. Sheng Liu
  7. Mingyao Ying
  8. Guo-li Ming
  9. Hongjun Song
  10. Jiang Qian  Is a corresponding author
  11. Heng Zhu  Is a corresponding author
  12. Shuli Xia  Is a corresponding author
  1. Indiana University School of Medicine, United States
  2. Johns Hopkins University School of Medicine, United States

Abstract

Altered DNA methylation status is associated with human diseases and cancer; however, the underlying molecular mechanisms remain elusive. We previously identified many human transcription factors, including Krüppel-like factor 4 (KLF4), as sequence-specific DNA methylation readers that preferentially recognize methylated CpG (mCpG), here we report the biological function of mCpG-dependent gene regulation by KLF4 in glioblastoma cells. We show that KLF4 promotes cell adhesion, migration, and morphological changes, all of which are abolished by R458A mutation. Surprisingly, 116 genes are directly activated via mCpG-dependent KLF4 binding activity. In-depth mechanistic studies reveal that recruitment of KLF4 to the methylated cis-regulatory elements of these genes result in chromatin remodeling and transcription activation. Our study demonstrates a new paradigm of DNA methylation-mediated gene activation and chromatin remodeling, and provides a general framework to dissect the biological functions of DNA methylation readers and effectors.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jun Wan

    Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yijing Su

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qifeng Song

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brian Tung

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Olutobi Oyinlade

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sheng Liu

    The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingyao Ying

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Guo-li Ming

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongjun Song

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiang Qian

    The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jiang.qian@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Heng Zhu

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    hzhu4@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
  12. Shuli Xia

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    xia@kennedykrieger.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5849-6967

Funding

National Institutes of Health (R01NS091165)

  • Shuli Xia

National Institutes of Health (EY024580)

  • Jiang Qian

National Institutes of Health (R01 GM111514)

  • Heng Zhu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,084
    views
  • 377
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jun Wan
  2. Yijing Su
  3. Qifeng Song
  4. Brian Tung
  5. Olutobi Oyinlade
  6. Sheng Liu
  7. Mingyao Ying
  8. Guo-li Ming
  9. Hongjun Song
  10. Jiang Qian
  11. Heng Zhu
  12. Shuli Xia
(2017)
Methylated cis-regulatory elements mediate KLF4-denpendent gene transactivation and cell migration
eLife 6:e20068.
https://doi.org/10.7554/eLife.20068

Share this article

https://doi.org/10.7554/eLife.20068

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.