Methylated cis-regulatory elements mediate KLF4-denpendent gene transactivation and cell migration

  1. Jun Wan
  2. Yijing Su
  3. Qifeng Song
  4. Brian Tung
  5. Olutobi Oyinlade
  6. Sheng Liu
  7. Mingyao Ying
  8. Guo-li Ming
  9. Hongjun Song
  10. Jiang Qian  Is a corresponding author
  11. Heng Zhu  Is a corresponding author
  12. Shuli Xia  Is a corresponding author
  1. Indiana University School of Medicine, United States
  2. Johns Hopkins University School of Medicine, United States

Abstract

Altered DNA methylation status is associated with human diseases and cancer; however, the underlying molecular mechanisms remain elusive. We previously identified many human transcription factors, including Krüppel-like factor 4 (KLF4), as sequence-specific DNA methylation readers that preferentially recognize methylated CpG (mCpG), here we report the biological function of mCpG-dependent gene regulation by KLF4 in glioblastoma cells. We show that KLF4 promotes cell adhesion, migration, and morphological changes, all of which are abolished by R458A mutation. Surprisingly, 116 genes are directly activated via mCpG-dependent KLF4 binding activity. In-depth mechanistic studies reveal that recruitment of KLF4 to the methylated cis-regulatory elements of these genes result in chromatin remodeling and transcription activation. Our study demonstrates a new paradigm of DNA methylation-mediated gene activation and chromatin remodeling, and provides a general framework to dissect the biological functions of DNA methylation readers and effectors.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jun Wan

    Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yijing Su

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qifeng Song

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brian Tung

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Olutobi Oyinlade

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sheng Liu

    The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingyao Ying

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Guo-li Ming

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongjun Song

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiang Qian

    The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jiang.qian@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Heng Zhu

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    hzhu4@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
  12. Shuli Xia

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    xia@kennedykrieger.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5849-6967

Funding

National Institutes of Health (R01NS091165)

  • Shuli Xia

National Institutes of Health (EY024580)

  • Jiang Qian

National Institutes of Health (R01 GM111514)

  • Heng Zhu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,076
    views
  • 377
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jun Wan
  2. Yijing Su
  3. Qifeng Song
  4. Brian Tung
  5. Olutobi Oyinlade
  6. Sheng Liu
  7. Mingyao Ying
  8. Guo-li Ming
  9. Hongjun Song
  10. Jiang Qian
  11. Heng Zhu
  12. Shuli Xia
(2017)
Methylated cis-regulatory elements mediate KLF4-denpendent gene transactivation and cell migration
eLife 6:e20068.
https://doi.org/10.7554/eLife.20068

Share this article

https://doi.org/10.7554/eLife.20068

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.