Methylated cis-regulatory elements mediate KLF4-denpendent gene transactivation and cell migration

  1. Jun Wan
  2. Yijing Su
  3. Qifeng Song
  4. Brian Tung
  5. Olutobi Oyinlade
  6. Sheng Liu
  7. Mingyao Ying
  8. Guo-li Ming
  9. Hongjun Song
  10. Jiang Qian  Is a corresponding author
  11. Heng Zhu  Is a corresponding author
  12. Shuli Xia  Is a corresponding author
  1. Indiana University School of Medicine, United States
  2. Johns Hopkins University School of Medicine, United States

Abstract

Altered DNA methylation status is associated with human diseases and cancer; however, the underlying molecular mechanisms remain elusive. We previously identified many human transcription factors, including Krüppel-like factor 4 (KLF4), as sequence-specific DNA methylation readers that preferentially recognize methylated CpG (mCpG), here we report the biological function of mCpG-dependent gene regulation by KLF4 in glioblastoma cells. We show that KLF4 promotes cell adhesion, migration, and morphological changes, all of which are abolished by R458A mutation. Surprisingly, 116 genes are directly activated via mCpG-dependent KLF4 binding activity. In-depth mechanistic studies reveal that recruitment of KLF4 to the methylated cis-regulatory elements of these genes result in chromatin remodeling and transcription activation. Our study demonstrates a new paradigm of DNA methylation-mediated gene activation and chromatin remodeling, and provides a general framework to dissect the biological functions of DNA methylation readers and effectors.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jun Wan

    Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yijing Su

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qifeng Song

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brian Tung

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Olutobi Oyinlade

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sheng Liu

    The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingyao Ying

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Guo-li Ming

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongjun Song

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiang Qian

    The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jiang.qian@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Heng Zhu

    Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    hzhu4@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
  12. Shuli Xia

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    xia@kennedykrieger.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5849-6967

Funding

National Institutes of Health (R01NS091165)

  • Shuli Xia

National Institutes of Health (EY024580)

  • Jiang Qian

National Institutes of Health (R01 GM111514)

  • Heng Zhu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jun Wan
  2. Yijing Su
  3. Qifeng Song
  4. Brian Tung
  5. Olutobi Oyinlade
  6. Sheng Liu
  7. Mingyao Ying
  8. Guo-li Ming
  9. Hongjun Song
  10. Jiang Qian
  11. Heng Zhu
  12. Shuli Xia
(2017)
Methylated cis-regulatory elements mediate KLF4-denpendent gene transactivation and cell migration
eLife 6:e20068.
https://doi.org/10.7554/eLife.20068

Share this article

https://doi.org/10.7554/eLife.20068

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.