Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling

  1. Michael Krieg
  2. Jan Stühmer
  3. Juan G Cueva
  4. Richard Fetter
  5. Kerri A Spliker
  6. Daniel Cremers
  7. Kang Shen
  8. Alexander R Dunn
  9. Miriam B Goodman  Is a corresponding author
  1. Institute of Photonic Sciences, Spain
  2. Technical University of Munich, Germany
  3. Stanford University, United States

Abstract

Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 β-spectrin, PTL-1 tau/MAP2-like and MEC-7 β-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress, and propose that defects in -spectrin and tau may sensitize neurons to damage.

Article and author information

Author details

  1. Michael Krieg

    Institute of Photonic Sciences, Barcelona, Spain
    Competing interests
    No competing interests declared.
  2. Jan Stühmer

    Department of Informatics, Technical University of Munich, München, Germany
    Competing interests
    No competing interests declared.
  3. Juan G Cueva

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Richard Fetter

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Kerri A Spliker

    Institute of Photonic Sciences, Barcelona, Spain
    Competing interests
    No competing interests declared.
  6. Daniel Cremers

    Department of Informatics, Technical University of Munich, München, Germany
    Competing interests
    No competing interests declared.
  7. Kang Shen

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    Kang Shen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4059-8249
  8. Alexander R Dunn

    Department of Chemical Engineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6096-4600
  9. Miriam B Goodman

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    For correspondence
    mbgoodmn@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5810-1272

Funding

National Institute of Neurological Disorders and Stroke (R01NS092099-02)

  • Alexander R Dunn
  • Miriam B Goodman

National Institute of Neurological Disorders and Stroke (5K99NS089942-02)

  • Michael Krieg

Howard Hughes Medical Institute

  • Kang Shen
  • Alexander R Dunn

H2020 European Research Council (ERC-2014-CoG)

  • Jan Stühmer
  • Daniel Cremers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Krieg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,832
    views
  • 736
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Krieg
  2. Jan Stühmer
  3. Juan G Cueva
  4. Richard Fetter
  5. Kerri A Spliker
  6. Daniel Cremers
  7. Kang Shen
  8. Alexander R Dunn
  9. Miriam B Goodman
(2017)
Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling
eLife 6:e20172.
https://doi.org/10.7554/eLife.20172

Share this article

https://doi.org/10.7554/eLife.20172

Further reading

    1. Cell Biology
    Jessica E Schwarz, Antonijo Mrčela ... Amita Sehgal
    Short Report

    Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25–30) and old (age 70–76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at initiating robust ~24 hr oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera promote cycling of different sets of genes. Genes that lose rhythmicity with old serum entrainment are associated with oxidative phosphorylation and Alzheimer’s Disease as identified by STRING and IPA analyses. Conversely, the expression of cycling genes associated with cholesterol biosynthesis increased in the cells entrained with old serum. Genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions. We did not observe a global difference in the distribution of phase between groups, but found that peak expression of several clock-controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lagged in the cells synchronized ex vivo with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect circadian rhythms in peripheral cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.

    1. Cell Biology
    2. Genetics and Genomics
    Priyanka Das, Alejandro Aballay, Jogender Singh
    Research Article

    Calcineurin is a highly conserved calcium/calmodulin-dependent serine/threonine protein phosphatase with diverse functions. Inhibition of calcineurin is known to enhance the lifespan of Caenorhabditis elegans through multiple signaling pathways. Aiming to study the role of calcineurin in regulating innate immunity, we discover that calcineurin is required for the rhythmic defecation motor program (DMP) in C. elegans. Calcineurin inhibition leads to defects in the DMP, resulting in intestinal bloating, rapid colonization of the gut by bacteria, and increased susceptibility to bacterial infection. We demonstrate that intestinal bloating caused by calcineurin inhibition mimics the effects of calorie restriction, resulting in enhanced lifespan. The TFEB ortholog, HLH-30, is required for lifespan extension mediated by calcineurin inhibition. Finally, we show that the nuclear hormone receptor, NHR-8, is upregulated by calcineurin inhibition and is necessary for the increased lifespan. Our studies uncover a role for calcineurin in the C. elegans DMP and provide a new mechanism for calcineurin inhibition-mediated longevity extension.