Abstract

Evolutionary differences in gene regulation between humans and lower mammalian experimental systems are incompletely understood, a potential translational obstacle that is challenging to surmount in neurons, where primary tissue availability is poor. Rodent-based studies show that activity-dependent transcriptional programs mediate myriad functions in neuronal development, but the extent of their conservation in human neurons is unknown. We compared activity-dependent transcriptional responses in developing human stem cell-derived cortical neurons with those induced in developing primary- or stem cell-derived mouse cortical neurons. While activity-dependent gene-responsiveness showed little dependence on developmental stage or origin (primary tissue vs. stem cell), notable species-dependent differences were observed. Moreover, differential species-specific gene ortholog regulation was recapitulated in aneuploid mouse neurons carrying human chromosome-21, implicating promoter/enhancer sequence divergence as a factor, including human-specific activity-responsive AP-1 sites. These findings support the use of human neuronal systems for probing transcriptional responses to physiological stimuli or indeed pharmaceutical agents.

Article and author information

Author details

  1. Jing Qiu

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jamie McQueen

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Bilada Bilican

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Owen Dando

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Dario Magnani

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Karolina Punovuori

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0297-1225
  7. Bhuvaneish T Selvaraj

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Matthew Livesey

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Ghazal Haghi

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Samuel Heron

    School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Karen Burr

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Rickie Patani

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Rinku Rajan

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Olivia Sheppard

    Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Peter C Kind

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. T Ian Simpson

    School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0495-7187
  17. Victor LJ Tybulewicz

    Division of Immune Cell Biology, MRC National Institute for Medical Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2439-0798
  18. David JA Wyllie

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4957-6049
  19. Elizabeth MC Fisher

    Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Sally Lowell

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4018-9480
  21. Siddharthan Chandran

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    siddharthan.chandran@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  22. Giles E Hardingham

    School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Giles.Hardingham@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7629-5314

Funding

Medical Research Council

  • Giles E Hardingham

Wellcome

  • Giles E Hardingham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne West, Duke University School of Medicine, United States

Ethics

Animal experimentation: Animals used in this study were treated in accordance with UK Animal Scientific Procedures Act (1986) and the work subject to local ethical review approval by the University of Edinburgh Ethical Review Committee. The relevant project licence is 7009008, and the use of genetically modified organisms approved by local committee reference SBMS 13_007.

Version history

  1. Received: August 12, 2016
  2. Accepted: September 30, 2016
  3. Accepted Manuscript published: October 1, 2016 (version 1)
  4. Accepted Manuscript updated: October 12, 2016 (version 2)
  5. Version of Record published: November 2, 2016 (version 3)
  6. Version of Record updated: November 8, 2016 (version 4)

Copyright

© 2016, Qiu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,346
    views
  • 694
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jing Qiu
  2. Jamie McQueen
  3. Bilada Bilican
  4. Owen Dando
  5. Dario Magnani
  6. Karolina Punovuori
  7. Bhuvaneish T Selvaraj
  8. Matthew Livesey
  9. Ghazal Haghi
  10. Samuel Heron
  11. Karen Burr
  12. Rickie Patani
  13. Rinku Rajan
  14. Olivia Sheppard
  15. Peter C Kind
  16. T Ian Simpson
  17. Victor LJ Tybulewicz
  18. David JA Wyllie
  19. Elizabeth MC Fisher
  20. Sally Lowell
  21. Siddharthan Chandran
  22. Giles E Hardingham
(2016)
Evidence for evolutionary divergence of activity-dependent gene expression in developing neurons
eLife 5:e20337.
https://doi.org/10.7554/eLife.20337

Share this article

https://doi.org/10.7554/eLife.20337

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.