Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer

  1. Stephanie Berger  Is a corresponding author
  2. Erik Procko
  3. Daciana Margineantu
  4. Erinna F Lee
  5. Betty W Shen
  6. Alex Zelter
  7. Daniel-Adriano Silva
  8. Kusum Chawla
  9. Marco J Herold
  10. Jean-Marc Garnier
  11. Richard Johnson
  12. Michael J MacCoss
  13. Guillaume Lessene
  14. Trisha N Davis
  15. Patrick S Stayton
  16. Barry L Stoddard
  17. W Douglas Fairlie
  18. David M Hockenbery
  19. David Baker  Is a corresponding author
  1. University of Washington, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. LaTrobe Institute for Molecular Science, Australia
  4. The Walter and Eliza Hall Institute of Medical Research, Australia
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/20352/elife-20352-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephanie Berger
  2. Erik Procko
  3. Daciana Margineantu
  4. Erinna F Lee
  5. Betty W Shen
  6. Alex Zelter
  7. Daniel-Adriano Silva
  8. Kusum Chawla
  9. Marco J Herold
  10. Jean-Marc Garnier
  11. Richard Johnson
  12. Michael J MacCoss
  13. Guillaume Lessene
  14. Trisha N Davis
  15. Patrick S Stayton
  16. Barry L Stoddard
  17. W Douglas Fairlie
  18. David M Hockenbery
  19. David Baker
(2016)
Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer
eLife 5:e20352.
https://doi.org/10.7554/eLife.20352