Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer

  1. Stephanie Berger  Is a corresponding author
  2. Erik Procko
  3. Daciana Margineantu
  4. Erinna F Lee
  5. Betty W Shen
  6. Alex Zelter
  7. Daniel-Adriano Silva
  8. Kusum Chawla
  9. Marco J Herold
  10. Jean-Marc Garnier
  11. Richard Johnson
  12. Michael J MacCoss
  13. Guillaume Lessene
  14. Trisha N Davis
  15. Patrick S Stayton
  16. Barry L Stoddard
  17. W Douglas Fairlie
  18. David M Hockenbery
  19. David Baker  Is a corresponding author
  1. University of Washington, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. LaTrobe Institute for Molecular Science, Australia
  4. The Walter and Eliza Hall Institute of Medical Research, Australia

Abstract

Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Stephanie Berger

    Department of Bioengineering, University of Washington, Seattle, United States
    For correspondence
    berger389@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3738-5907
  2. Erik Procko

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daciana Margineantu

    Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Erinna F Lee

    Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Betty W Shen

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Zelter

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel-Adriano Silva

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kusum Chawla

    Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marco J Herold

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-Marc Garnier

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Richard Johnson

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael J MacCoss

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Guillaume Lessene

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1193-8147
  14. Trisha N Davis

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4797-3152
  15. Patrick S Stayton

    Department of Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Barry L Stoddard

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. W Douglas Fairlie

    Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. David M Hockenbery

    Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. David Baker

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dabaker@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7896-6217

Funding

National Institutes of Health (P41GM103533)

  • Stephanie Berger
  • Erik Procko
  • David Baker

Australian Research Council (FT150100212)

  • Erinna F Lee

National Institutes of Health (R01 GM115545)

  • Betty W Shen
  • Barry L Stoddard

National Institutes of Health (R01 CA158921-04)

  • Daciana Margineantu
  • David M Hockenbery

Defense Threat Reduction Agency (HDTRA1-10-0040)

  • Stephanie Berger
  • Erik Procko
  • David Baker

Howard Hughes Medical Institute (HHMI-027779)

  • Stephanie Berger
  • Erik Procko
  • David Baker

National Science Foundation (Graduate Research Fellowship Program)

  • Stephanie Berger

Worldwide Cancer Research (15-0025)

  • Erinna F Lee
  • W Douglas Fairlie

Cancer Council Victoria (1057949)

  • Erinna F Lee
  • W Douglas Fairlie

Pew Charitable Trusts

  • Daniel-Adriano Silva

Consejo Nacional de Ciencia y Tecnología

  • Daniel-Adriano Silva

National Health and Medical Research Council (1024620)

  • Erinna F Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Berger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,366
    views
  • 1,116
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephanie Berger
  2. Erik Procko
  3. Daciana Margineantu
  4. Erinna F Lee
  5. Betty W Shen
  6. Alex Zelter
  7. Daniel-Adriano Silva
  8. Kusum Chawla
  9. Marco J Herold
  10. Jean-Marc Garnier
  11. Richard Johnson
  12. Michael J MacCoss
  13. Guillaume Lessene
  14. Trisha N Davis
  15. Patrick S Stayton
  16. Barry L Stoddard
  17. W Douglas Fairlie
  18. David M Hockenbery
  19. David Baker
(2016)
Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer
eLife 5:e20352.
https://doi.org/10.7554/eLife.20352

Share this article

https://doi.org/10.7554/eLife.20352

Further reading

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.