Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer

  1. Stephanie Berger  Is a corresponding author
  2. Erik Procko
  3. Daciana Margineantu
  4. Erinna F Lee
  5. Betty W Shen
  6. Alex Zelter
  7. Daniel-Adriano Silva
  8. Kusum Chawla
  9. Marco J Herold
  10. Jean-Marc Garnier
  11. Richard Johnson
  12. Michael J MacCoss
  13. Guillaume Lessene
  14. Trisha N Davis
  15. Patrick S Stayton
  16. Barry L Stoddard
  17. W Douglas Fairlie
  18. David M Hockenbery
  19. David Baker  Is a corresponding author
  1. University of Washington, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. LaTrobe Institute for Molecular Science, Australia
  4. The Walter and Eliza Hall Institute of Medical Research, Australia

Abstract

Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Stephanie Berger

    Department of Bioengineering, University of Washington, Seattle, United States
    For correspondence
    berger389@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3738-5907
  2. Erik Procko

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daciana Margineantu

    Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Erinna F Lee

    Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Betty W Shen

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Zelter

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel-Adriano Silva

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kusum Chawla

    Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marco J Herold

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-Marc Garnier

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Richard Johnson

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael J MacCoss

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Guillaume Lessene

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1193-8147
  14. Trisha N Davis

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4797-3152
  15. Patrick S Stayton

    Department of Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Barry L Stoddard

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. W Douglas Fairlie

    Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. David M Hockenbery

    Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. David Baker

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dabaker@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7896-6217

Funding

National Institutes of Health (P41GM103533)

  • Stephanie Berger
  • Erik Procko
  • David Baker

Australian Research Council (FT150100212)

  • Erinna F Lee

National Institutes of Health (R01 GM115545)

  • Betty W Shen
  • Barry L Stoddard

National Institutes of Health (R01 CA158921-04)

  • Daciana Margineantu
  • David M Hockenbery

Defense Threat Reduction Agency (HDTRA1-10-0040)

  • Stephanie Berger
  • Erik Procko
  • David Baker

Howard Hughes Medical Institute (HHMI-027779)

  • Stephanie Berger
  • Erik Procko
  • David Baker

National Science Foundation (Graduate Research Fellowship Program)

  • Stephanie Berger

Worldwide Cancer Research (15-0025)

  • Erinna F Lee
  • W Douglas Fairlie

Cancer Council Victoria (1057949)

  • Erinna F Lee
  • W Douglas Fairlie

Pew Charitable Trusts

  • Daniel-Adriano Silva

Consejo Nacional de Ciencia y Tecnología

  • Daniel-Adriano Silva

National Health and Medical Research Council (1024620)

  • Erinna F Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Berger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,421
    views
  • 1,124
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephanie Berger
  2. Erik Procko
  3. Daciana Margineantu
  4. Erinna F Lee
  5. Betty W Shen
  6. Alex Zelter
  7. Daniel-Adriano Silva
  8. Kusum Chawla
  9. Marco J Herold
  10. Jean-Marc Garnier
  11. Richard Johnson
  12. Michael J MacCoss
  13. Guillaume Lessene
  14. Trisha N Davis
  15. Patrick S Stayton
  16. Barry L Stoddard
  17. W Douglas Fairlie
  18. David M Hockenbery
  19. David Baker
(2016)
Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer
eLife 5:e20352.
https://doi.org/10.7554/eLife.20352

Share this article

https://doi.org/10.7554/eLife.20352

Further reading

    1. Cancer Biology
    2. Medicine
    Patrick Brandt, Dawayne Whittington ... Rebekah L Layton
    Research Article

    A doctoral-level internship program was developed at the University of North Carolina at Chapel Hill with the intent to create customizable experiential learning opportunities for biomedical trainees to support career exploration, preparation, and transition into their postgraduate professional roles. We report the outcomes of this program over a 5-year period. During that 5-year period, 123 internships took place at over 70 partner sites, representing at least 20 academic, for-profit, and non-profit career paths in the life sciences. A major goal of the program was to enhance trainees’ skill development and expertise in careers of interest. The benefits of the internship program for interns, host/employer, and supervisor/principal investigator were assessed using a mixed-methods approach, including surveys with closed- and open-ended responses as well as focus group interviews. Balancing stakeholder interests is key to creating a sustainable program with widespread support; hence, the level of support from internship hosts and faculty members were the key metrics analyzed throughout. We hypothesized that once a successful internship program was implemented, faculty culture might shift to be more accepting of internships; indeed, the data quantifying faculty attitudes support this. Furthermore, host motivation and performance expectations of interns were compared with results achieved, and this data revealed both expected and surprising benefits to hosts. Data suggests a myriad of benefits for each stakeholder group, and themes are cataloged and discussed. Program outcomes, evaluation data, policies, resources, and best practices developed through the implementation of this program are shared to provide resources that facilitate the creation of similar internship programs at other institutions. Program development was initially spurred by National Institutes of Health pilot funding, thereafter, successfully transitioning from a grant-supported model, to an institutionally supported funding model to achieve long-term programmatic sustainability.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.