Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation

  1. Kenji Sugioka
  2. Danielle R Hamill
  3. Joshua B Lowry
  4. Marie E McNeely
  5. Molly Enrick
  6. Alyssa C Richter
  7. Lauren E Kiebler
  8. James R Priess
  9. Bruce Bowerman  Is a corresponding author
  1. University of Oregon, United States
  2. Ohio Wesleyan University, United States
  3. Fred Hutchinson Cancer Research Center, United States

Abstract

The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly.

Article and author information

Author details

  1. Kenji Sugioka

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5830-9639
  2. Danielle R Hamill

    Department of Zoology, Ohio Wesleyan University, Delaware, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua B Lowry

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie E McNeely

    Department of Zoology, Ohio Wesleyan University, Delaware, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Molly Enrick

    Department of Zoology, Ohio Wesleyan University, Delaware, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alyssa C Richter

    Department of Zoology, Ohio Wesleyan University, Delaware, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lauren E Kiebler

    Department of Zoology, Ohio Wesleyan University, Delaware, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James R Priess

    Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bruce Bowerman

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    For correspondence
    bbowerman@molbio.uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6479-8707

Funding

Human Frontier Science Program

  • Kenji Sugioka

Journal of Cell Science Traveling Fellowship

  • Kenji Sugioka

National Institute of General Medical Sciences

  • Kenji Sugioka
  • Danielle R Hamill
  • Joshua B Lowry
  • Marie E McNeely
  • Molly Enrick
  • Alyssa C Richter
  • Lauren E Kiebler
  • James R Priess
  • Bruce Bowerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Sugioka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,059
    views
  • 917
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenji Sugioka
  2. Danielle R Hamill
  3. Joshua B Lowry
  4. Marie E McNeely
  5. Molly Enrick
  6. Alyssa C Richter
  7. Lauren E Kiebler
  8. James R Priess
  9. Bruce Bowerman
(2017)
Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation
eLife 6:e20353.
https://doi.org/10.7554/eLife.20353

Share this article

https://doi.org/10.7554/eLife.20353

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article Updated

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article Updated

    Distal appendages are ninefold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for the formation of the primary cilium, by regulating at least four critical steps: preciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here, we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in the RAB34+ vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.