A transmission-virulence evolutionary trade-off explains attenuation of HIV-1 in Uganda

  1. François Blanquart  Is a corresponding author
  2. Mary Kate Grabowski
  3. Joshua Herbeck
  4. Fred Nalugoda
  5. David Serwadda
  6. Michael A Eller
  7. Merlin L Robb
  8. Ronald Gray
  9. Godfrey Kigozi
  10. Oliver Laeyendecker
  11. Katrina A Lythgoe
  12. Gertrude Nakigozi
  13. Thomas C Quinn
  14. Steven J Reynolds
  15. Maria J Wawer
  16. Christophe Fraser
  1. Imperial College London, United Kingdom
  2. Johns Hopkins University, United States
  3. University of Washington, United States
  4. Rakai Health Sciences Program, Uganda
  5. Walter Reed Army Institute of Research, United States
  6. National Institutes of Health, United States

Abstract

Evolutionary theory hypothesizes that intermediate virulence maximizes pathogen fitness as a result of a trade-off between virulence and transmission, but empirical evidence remains scarce. We bridge this gap using data from a large and long-standing HIV-1 prospective cohort, in Uganda. We use an epidemiological-evolutionary model parameterised with this data to derive evolutionary predictions based on analysis and detailed individual-based simulations. We robustly predict stabilising selection towards a low level of virulence, and rapid attenuation of the virus. Accordingly, set-point viral load, the most common measure of virulence, has declined in the last 20 years. Our model also predicts that subtype A is slowly outcompeting subtype D, with both subtypes becoming less virulent, as observed in the data. Reduction of set-point viral loads should have resulted in a 20% reduction in incidence, and a three years extension of untreated asymptomatic infection, increasing opportunities for timely treatment of infected individuals.

Data availability

The following data sets were generated

Article and author information

Author details

  1. François Blanquart

    MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom
    For correspondence
    f.blanquart@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0591-2466
  2. Mary Kate Grabowski

    Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua Herbeck

    International Clinical Research Center, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4577-7406
  4. Fred Nalugoda

    Rakai Health Sciences Program, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  5. David Serwadda

    Rakai Health Sciences Program, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael A Eller

    U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Merlin L Robb

    U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ronald Gray

    Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Godfrey Kigozi

    Rakai Health Sciences Program, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  10. Oliver Laeyendecker

    Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Katrina A Lythgoe

    MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Gertrude Nakigozi

    Rakai Health Sciences Program, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  13. Thomas C Quinn

    Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Steven J Reynolds

    Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Maria J Wawer

    Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Christophe Fraser

    MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Commission (Intra European Fellowship 657768)

  • François Blanquart

World Bank Group

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

Henry M. Jackson Foundation (W81XWH-07-2-0067)

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

U.S. Department of Defense (W81XWH-07-2-0067)

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

National Institutes of Health (R01AI108490; P30AI027757)

  • Joshua Herbeck

European Research Council (PBDR-339251)

  • Christophe Fraser

National Institute of Allergy and Infectious Diseases (R01 Al 29314; R01 AI34826; UO1 AI11171-01-02)

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

National Institute of Child Health and Human Development (5P30 HD 06268)

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

John E. Fogarty Foundation for Persons with Intellectual and Developmental Disabilities (5D43TW00010)

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

John Snow Inc. (5024-30)

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

Pfizer (5024-30)

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

Rockefeller Foundation

  • Mary Kate Grabowski
  • Fred Nalugoda
  • David Serwadda
  • Michael A Eller
  • Merlin L Robb
  • Ronald Gray
  • Godfrey Kigozi
  • Oliver Laeyendecker
  • Gertrude Nakigozi
  • Thomas C Quinn
  • Steven J Reynolds
  • Maria J Wawer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained from all the participants in the Rakai Community Cohort Study.The Scientific and Ethics Committee of the Uganda Virus Research Institute (UVRI) of the Ministry of Health provides the Institutional Review Board approval and monitoring of all Rakai research.

Copyright

© 2016, Blanquart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,852
    views
  • 667
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. François Blanquart
  2. Mary Kate Grabowski
  3. Joshua Herbeck
  4. Fred Nalugoda
  5. David Serwadda
  6. Michael A Eller
  7. Merlin L Robb
  8. Ronald Gray
  9. Godfrey Kigozi
  10. Oliver Laeyendecker
  11. Katrina A Lythgoe
  12. Gertrude Nakigozi
  13. Thomas C Quinn
  14. Steven J Reynolds
  15. Maria J Wawer
  16. Christophe Fraser
(2016)
A transmission-virulence evolutionary trade-off explains attenuation of HIV-1 in Uganda
eLife 5:e20492.
https://doi.org/10.7554/eLife.20492

Share this article

https://doi.org/10.7554/eLife.20492

Further reading

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article Updated

    Background:

    The role of circulating metabolites on child development is understudied. We investigated associations between children’s serum metabolome and early childhood development (ECD).

    Methods:

    Untargeted metabolomics was performed on serum samples of 5004 children aged 6–59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children’s milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥1. The interaction between significant metabolites and the child’s age was tested.

    Results:

    Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child’s nutritional status, diet quality, and infant age. Cresol sulfate (β=–0.07; adjusted-p <0.001), hippuric acid (β=–0.06; adjusted-p <0.001), phenylacetylglutamine (β=–0.06; adjusted-p <0.001), and trimethylamine-N-oxide (β=–0.05; adjusted-p=0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged –1 SD: β=–0.05; pP=0.01;+1 SD: β=0.05; p=0.02) and methylhistidine (–1 SD: β = - 0.04; p=0.04;+1 SD: β=0.04; p=0.03).

    Conclusions:

    Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding:

    Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.