1. Plant Biology
Download icon

Auxin production in the endosperm drives seed coat development in Arabidopsis

  1. Duarte D Figueiredo
  2. Rita A Batista
  3. Pawel J Roszak
  4. Lars Hennig
  5. Claudia Köhler  Is a corresponding author
  1. Swedish University of Agricultural Sciences, Sweden
Research Article
  • Cited 96
  • Views 5,398
  • Annotations
Cite this article as: eLife 2016;5:e20542 doi: 10.7554/eLife.20542

Abstract

In flowering plants, seed development is initiated by fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Duarte D Figueiredo

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7990-3592
  2. Rita A Batista

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Pawel J Roszak

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Lars Hennig

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Claudia Köhler

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    For correspondence
    claudia.kohler@slu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2619-4857

Funding

European Research Council

  • Claudia Köhler

Vetenskapsrådet

  • Claudia Köhler

Knut och Alice Wallenbergs Stiftelse

  • Claudia Köhler

Olle Engkvist Byggmästare Foundation

  • Claudia Köhler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard Amasino, University of Wisconsin, United States

Publication history

  1. Received: August 11, 2016
  2. Accepted: November 14, 2016
  3. Accepted Manuscript published: November 16, 2016 (version 1)
  4. Version of Record published: December 2, 2016 (version 2)

Copyright

© 2016, Figueiredo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,398
    Page views
  • 1,236
    Downloads
  • 96
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Jaemyung Choi et al.
    Research Article

    Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.

    1. Plant Biology
    Juan Carlos De la Concepcion et al.
    Research Article Updated

    Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus Magnaporthe oryzae harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.