Unconventional secretory processing diversifies neuronal ion channel properties

  1. Cyril Hanus  Is a corresponding author
  2. Helene Geptin
  3. Georgi Tushev
  4. Sakshi Garg
  5. Beatriz Alvarez-Castelao
  6. Sivakumar Sambandan
  7. Lisa Kochen
  8. Anne-Sophie Hafner
  9. Julian D Langer
  10. Erin M Schuman  Is a corresponding author
  1. Max Planck Institute for Brain Research, Germany
  2. Max Planck Institute for Brain Research and Max Planck Institute for Biophysics, Germany

Abstract

N-glycosylation - the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus - is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane.

Article and author information

Author details

  1. Cyril Hanus

    Max Planck Institute for Brain Research, Frankfurt, Germany
    For correspondence
    cyril.hanus@brain.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Helene Geptin

    Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Georgi Tushev

    Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sakshi Garg

    Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Beatriz Alvarez-Castelao

    Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sivakumar Sambandan

    Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Lisa Kochen

    Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Anne-Sophie Hafner

    Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Julian D Langer

    Proteomics and MMB, Max Planck Institute for Brain Research and Max Planck Institute for Biophysics, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Erin M Schuman

    Max Planck Institute for Brain Research, Frankfurt, Germany
    For correspondence
    erin.schuman@brain.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7053-1005

Funding

European Research Council (DFG CRC 902)

  • Erin M Schuman

European Research Council (1080)

  • Erin M Schuman

DFG Cluster of Excellence for Macromolecular Complexes

  • Erin M Schuman

Marie Curie, career integration grant

  • Cyril Hanus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We hereby certify that all the experiments involving animals (i.e. postmortem tissue removal as defined in the {section sign} 4(3) of German animal welfare act) that were done in relation to our manuscript entitled "Unconventional secretory trafficking diversifies the properties of neuronal ion channels" were carried out in accordance with the European directive 2010/63/EU, the German animal welfare act, and the guidelines of the Federation ofLaboratory Animal Science Associations (FELASA) and the Max Planck Society.

Copyright

© 2016, Hanus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,697
    views
  • 1,114
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cyril Hanus
  2. Helene Geptin
  3. Georgi Tushev
  4. Sakshi Garg
  5. Beatriz Alvarez-Castelao
  6. Sivakumar Sambandan
  7. Lisa Kochen
  8. Anne-Sophie Hafner
  9. Julian D Langer
  10. Erin M Schuman
(2016)
Unconventional secretory processing diversifies neuronal ion channel properties
eLife 5:e20609.
https://doi.org/10.7554/eLife.20609

Share this article

https://doi.org/10.7554/eLife.20609

Further reading

    1. Cell Biology
    Fabian Link, Sisco Jung ... Brooke Morriswood
    Research Article

    The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.

    1. Cell Biology
    Georgia Maria Sagia, Xenia Georgiou ... Sofia Dimou
    Research Article Updated

    Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.