Abstract

Molecule clustering is an important mechanism underlying cellular self-organization. In the cell membrane, a variety of fundamentally different mechanisms drive membrane protein clustering into nanometre-sized assemblies. To date, it is unknown whether this clustering process can be dissected into steps differentially regulated by independent mechanisms. Using clustered syntaxin molecules as an example, we study the influence of a cytoplasmic protein domain on the clustering behaviour. Analysing protein mobility, cluster size and accessibility to myc-epitopes we show that forces acting on the transmembrane segment produce loose-clusters, while cytoplasmic protein interactions mediate a tightly packed state. We conclude that the data identify a hierarchy in membrane protein clustering likely being a paradigm for many cellular self-organization processes.

Article and author information

Author details

  1. Elisa Merklinger

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan-Gero Schloetel

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Pascal Weber

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Helena Batoulis

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Holz

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nora Karnowski

    Chemical Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jérôme Finke

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thorsten Lang

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    For correspondence
    thorsten.lang@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9128-0137

Funding

Deutsche Forschungsgemeinschaft (TRR83 to T.L.)

  • Thorsten Lang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Merklinger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,356
    views
  • 452
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisa Merklinger
  2. Jan-Gero Schloetel
  3. Pascal Weber
  4. Helena Batoulis
  5. Sarah Holz
  6. Nora Karnowski
  7. Jérôme Finke
  8. Thorsten Lang
(2017)
The packing density of a supramolecular membrane protein cluster is controlled by cytoplasmic interactions
eLife 6:e20705.
https://doi.org/10.7554/eLife.20705

Share this article

https://doi.org/10.7554/eLife.20705

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.