Abstract

Molecule clustering is an important mechanism underlying cellular self-organization. In the cell membrane, a variety of fundamentally different mechanisms drive membrane protein clustering into nanometre-sized assemblies. To date, it is unknown whether this clustering process can be dissected into steps differentially regulated by independent mechanisms. Using clustered syntaxin molecules as an example, we study the influence of a cytoplasmic protein domain on the clustering behaviour. Analysing protein mobility, cluster size and accessibility to myc-epitopes we show that forces acting on the transmembrane segment produce loose-clusters, while cytoplasmic protein interactions mediate a tightly packed state. We conclude that the data identify a hierarchy in membrane protein clustering likely being a paradigm for many cellular self-organization processes.

Article and author information

Author details

  1. Elisa Merklinger

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan-Gero Schloetel

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Pascal Weber

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Helena Batoulis

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Holz

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nora Karnowski

    Chemical Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jérôme Finke

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thorsten Lang

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    For correspondence
    thorsten.lang@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9128-0137

Funding

Deutsche Forschungsgemeinschaft (TRR83 to T.L.)

  • Thorsten Lang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Merklinger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,370
    views
  • 460
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisa Merklinger
  2. Jan-Gero Schloetel
  3. Pascal Weber
  4. Helena Batoulis
  5. Sarah Holz
  6. Nora Karnowski
  7. Jérôme Finke
  8. Thorsten Lang
(2017)
The packing density of a supramolecular membrane protein cluster is controlled by cytoplasmic interactions
eLife 6:e20705.
https://doi.org/10.7554/eLife.20705

Share this article

https://doi.org/10.7554/eLife.20705

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.