Assembling the Tat protein translocase

  1. Felicity Alcock
  2. Phillip J Stansfeld  Is a corresponding author
  3. Hajra Basit
  4. Johann Habersetzer
  5. Matthew AB Baker
  6. Tracy Palmer
  7. Mark I Wallace
  8. Ben C Berks  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Kings College London, United Kingdom
  3. University of Dundee, United Kingdom
  4. University of New South Wales, Australia

Abstract

The twin-arginine protein translocation system (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membranes of plant chloroplasts. The Tat transporter is assembled from multiple copies of the membrane proteins TatA, TatB, and TatC. We combine sequence co-evolution analysis, molecular simulations, and experimentation to define the interactions between the Tat proteins of Escherichia coli at molecular-level resolution. In the TatBC receptor complex the transmembrane helix of each TatB molecule is sandwiched between two TatC molecules, with one of the inter-subunit interfaces incorporating a functionally important cluster of interacting polar residues. Unexpectedly, we find that TatA also associates with TatC at the polar cluster site. Our data provide a structural model for assembly of the active Tat translocase in which substrate binding triggers replacement of TatB by TatA at the polar cluster site. Our work demonstrates the power of co-evolution analysis to predict protein interfaces in multi-subunit complexes.

Article and author information

Author details

  1. Felicity Alcock

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Phillip J Stansfeld

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    phillip.stansfeld@bioch.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  3. Hajra Basit

    Department of Chemistry, Kings College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Johann Habersetzer

    Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew AB Baker

    EMBL Australia Node for Single Molecule Science, University of New South Wales, Kensington, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Tracy Palmer

    Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark I Wallace

    Department of Chemistry, Kings College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5692-8313
  8. Ben C Berks

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    ben.berks@bioch.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9685-4067

Funding

Biotechnology and Biological Sciences Research Council (BB/L002531/1)

  • Tracy Palmer
  • Ben C Berks

Wellcome (Investigator Award 107929/Z/15/Z)

  • Ben C Berks

Medical Research Council (G1001640)

  • Tracy Palmer
  • Ben C Berks

European Commission (Marie Curie Fellowship Programme: GP7-PEOPLE-2013-IEF 626436)

  • Hajra Basit
  • Mark I Wallace

Biotechnology and Biological Sciences Research Council (BB/I019855/1)

  • Phillip J Stansfeld

Wellcome (Investigator Award 110183/Z/15/Z)

  • Tracy Palmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Alcock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,257
    views
  • 817
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felicity Alcock
  2. Phillip J Stansfeld
  3. Hajra Basit
  4. Johann Habersetzer
  5. Matthew AB Baker
  6. Tracy Palmer
  7. Mark I Wallace
  8. Ben C Berks
(2016)
Assembling the Tat protein translocase
eLife 5:e20718.
https://doi.org/10.7554/eLife.20718

Share this article

https://doi.org/10.7554/eLife.20718

Further reading

    1. Biochemistry and Chemical Biology
    Adrian CD Fuchs
    Research Article

    The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.