Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation

  1. Tim Stuart
  2. Steven Eichten
  3. Jonathan Cahn
  4. Yuliya Karpievitch
  5. Justin Borevitz
  6. Ryan Lister  Is a corresponding author
  1. The University of Western Australia, Australia
  2. The Australian National University, Australia

Abstract

Variation in the presence or absence of transposable elements (TEs) is a major source of genetic variation between individuals. Here, we identified 23,095 TE presence/absence variants between 216 Arabidopsis accessions. Most TE variants were rare, and we find these rare variants associated with local extremes of gene expression and DNA methylation levels within the population. Of the common alleles identified, two thirds were not in linkage disequilibrium with nearby SNPs, implicating these variants as a source of novel genetic diversity. Many common TE variants were associated with significantly altered expression of nearby genes, and a major fraction of inter-accession DNA methylation differences were associated with nearby TE insertions. Overall, this demonstrates that TE variants are a rich source of genetic diversity that likely plays an important role in facilitating epigenomic and transcriptional differences between individuals, and indicates a strong genetic basis for epigenetic variation.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tim Stuart

    ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven Eichten

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2268-395X
  3. Jonathan Cahn

    ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5006-741X
  4. Yuliya Karpievitch

    ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Justin Borevitz

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Ryan Lister

    ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
    For correspondence
    ryan.lister@uwa.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6637-7239

Funding

Centre of Excellence in Plant Energy Biology, Australian Research Council (CE140100008)

  • Tim Stuart
  • Steven Eichten
  • Jonathan Cahn
  • Yuliya Karpievitch
  • Justin Borevitz
  • Ryan Lister

Australian Research Council

  • Tim Stuart
  • Steven Eichten
  • Jonathan Cahn
  • Yuliya Karpievitch
  • Justin Borevitz
  • Ryan Lister

Sylvia and Charles Viertel Charitable Foundation

  • Ryan Lister

Australian Research Council (FT120100862)

  • Ryan Lister

Australian Research Council (DE150101206)

  • Steven Eichten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Stuart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,864
    views
  • 1,213
    downloads
  • 186
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tim Stuart
  2. Steven Eichten
  3. Jonathan Cahn
  4. Yuliya Karpievitch
  5. Justin Borevitz
  6. Ryan Lister
(2016)
Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation
eLife 5:e20777.
https://doi.org/10.7554/eLife.20777

Share this article

https://doi.org/10.7554/eLife.20777

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.