1. Cancer Biology
  2. Cell Biology
Download icon

AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin

Research Article
  • Cited 30
  • Views 2,765
  • Annotations
Cite this article as: eLife 2016;5:e20795 doi: 10.7554/eLife.20795
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Loss of epithelial polarity impacts organ development and function; it is also oncogenic. AMPK, a key sensor of metabolic stress stabilizes cell-cell junctions and maintains epithelial polarity; its activation by Metformin protects the epithelial barrier against stress and suppresses tumorigenesis. How AMPK protects the epithelium remains unknown. Here we identify GIV/Girdin as a novel effector of AMPK, whose phosphorylation at a single site is both necessary and sufficient for strengthening mammalian epithelial tight junctions and preserving cell polarity and barrier function in the face of energetic stress. Expression of an oncogenic mutant of GIV (cataloged in TCGA) that cannot be phosphorylated by AMPK increased anchorage-independent growth of tumor cells and helped these cells evade the tumor-suppressive action of Metformin. This work defines a fundamental homeostatic mechanism by which the AMPK-GIV axis reinforces cell junctions against stress-induced collapse, and also provides mechanistic insight into the tumor-suppressive action of Metformin.

Article and author information

Author details

  1. Nicolas Aznar

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arjun Patel

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina C Rohena

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ying Dunkel

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Linda P Joosen

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vanessa Taupin

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Irina Kufareva

    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marilyn G Farquhar

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Pradipta Ghosh

    Department of Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    prghosh@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8917-3201

Funding

National Cancer Institute (R01CA100768)

  • Marilyn G Farquhar
  • Pradipta Ghosh

National Cancer Institute (R01CA160911)

  • Pradipta Ghosh

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK099226)

  • Pradipta Ghosh

American Cancer Society (ACS-IRG 70-002)

  • Pradipta Ghosh

National Cancer Institute (Postdoctoral FellowshipT32CA121938)

  • Cristina C Rohena

National Institute of General Medical Sciences (R01GM071872)

  • Irina Kufareva

National Institute of Allergy and Infectious Diseases (R01AI118985)

  • Irina Kufareva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Johanna Ivaska, University of Turku, Finland

Publication history

  1. Received: August 21, 2016
  2. Accepted: November 3, 2016
  3. Accepted Manuscript published: November 4, 2016 (version 1)
  4. Version of Record published: November 22, 2016 (version 2)

Copyright

© 2016, Aznar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,765
    Page views
  • 725
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Sibylle Mitschka, Christine Mayr
    Research Article

    The TP53 gene encodes the tumor suppressor p53 which is functionally inactivated in many human cancers. Numerous studies suggested that 3′UTR-mediated p53 expression regulation plays a role in tumorigenesis and could be exploited for therapeutic purposes. However, these studies did not investigate post-transcriptional regulation of the native TP53 gene. Here, we used CRISPR/Cas9 to delete the human and mouse TP53/Trp53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. Using reporter assays, we confirmed the previously observed repressive effects of the isolated 3′UTR. However, addition of the TP53 coding region to the reporter had a dominant negative impact on expression as its repressive effect was stronger and abrogated the contribution of the 3′UTR. Our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.

    1. Cancer Biology
    2. Cell Biology
    Linda Julian et al.
    Research Article Updated

    Apoptosis is characterized by profound morphological changes, but their physiological purpose is unknown. To characterize the role of apoptotic cell contraction, ROCK1 was rendered caspase non-cleavable (ROCK1nc) by mutating aspartate 1113, which revealed that ROCK1 cleavage was necessary for forceful contraction and membrane blebbing. When homozygous ROCK1nc mice were treated with the liver-selective apoptotic stimulus of diethylnitrosamine, ROCK1nc mice had more profound liver damage with greater neutrophil infiltration than wild-type mice. Inhibition of the damage-associated molecular pattern protein HMGB1 or signalling by its cognate receptor TLR4 lowered neutrophil infiltration and reduced liver damage. ROCK1nc mice also developed fewer diethylnitrosamine-induced hepatocellular carcinoma (HCC) tumours, while HMGB1 inhibition increased HCC tumour numbers. Thus, ROCK1 activation and consequent cell contraction are required to limit sterile inflammation and damage amplification following tissue-scale cell death. Additionally, these findings reveal a previously unappreciated role for acute sterile inflammation as an efficient tumour-suppressive mechanism.