The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription

  1. Eva Torreira
  2. Jaime Alegrio Louro
  3. Irene Pazos
  4. Noelia González-Polo
  5. David Gil-Carton
  6. Ana Garcia Duran
  7. Sébastien Tosi
  8. Oriol Gallego  Is a corresponding author
  9. Olga Calvo
  10. Carlos Fernández-Tornero  Is a corresponding author
  1. Centro de Investigaciones Biológicas, Spain
  2. The Barcelona Institute of Science and Technology, Spain
  3. Instituto de Biología Funcional y Genómica, Spain
  4. Cooperative Center for Research in Biosciences CIC bioGUNE, Spain

Abstract

Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.

Article and author information

Author details

  1. Eva Torreira

    Centro de Investigaciones Biológicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Jaime Alegrio Louro

    Centro de Investigaciones Biológicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2800-923X
  3. Irene Pazos

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Noelia González-Polo

    Instituto de Biología Funcional y Genómica, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. David Gil-Carton

    Structural Biology Unit, Cooperative Center for Research in Biosciences CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Ana Garcia Duran

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Sébastien Tosi

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Oriol Gallego

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    oriol.gallego@irbbarcelona.org
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Calvo

    Instituto de Biología Funcional y Genómica, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Carlos Fernández-Tornero

    Centro de Investigaciones Biológicas, Madrid, Spain
    For correspondence
    cftornero@cib.csic.es
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Economía y Competitividad (BFU2013-48374-P)

  • Carlos Fernández-Tornero

Fundación Ramón Areces (-)

  • Carlos Fernández-Tornero

Ministerio de Economía y Competitividad (RYC-2011-07967)

  • Oriol Gallego

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, National Institutes of Health, United States

Version history

  1. Received: August 21, 2016
  2. Accepted: March 6, 2017
  3. Accepted Manuscript published: March 6, 2017 (version 1)
  4. Accepted Manuscript updated: March 8, 2017 (version 2)
  5. Version of Record published: March 22, 2017 (version 3)
  6. Version of Record updated: March 24, 2017 (version 4)

Copyright

© 2017, Torreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,136
    Page views
  • 759
    Downloads
  • 50
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva Torreira
  2. Jaime Alegrio Louro
  3. Irene Pazos
  4. Noelia González-Polo
  5. David Gil-Carton
  6. Ana Garcia Duran
  7. Sébastien Tosi
  8. Oriol Gallego
  9. Olga Calvo
  10. Carlos Fernández-Tornero
(2017)
The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription
eLife 6:e20832.
https://doi.org/10.7554/eLife.20832

Share this article

https://doi.org/10.7554/eLife.20832

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.