The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription

  1. Eva Torreira
  2. Jaime Alegrio Louro
  3. Irene Pazos
  4. Noelia González-Polo
  5. David Gil-Carton
  6. Ana Garcia Duran
  7. Sébastien Tosi
  8. Oriol Gallego  Is a corresponding author
  9. Olga Calvo
  10. Carlos Fernández-Tornero  Is a corresponding author
  1. Centro de Investigaciones Biológicas, Spain
  2. The Barcelona Institute of Science and Technology, Spain
  3. Instituto de Biología Funcional y Genómica, Spain
  4. Cooperative Center for Research in Biosciences CIC bioGUNE, Spain

Abstract

Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.

Article and author information

Author details

  1. Eva Torreira

    Centro de Investigaciones Biológicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Jaime Alegrio Louro

    Centro de Investigaciones Biológicas, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2800-923X
  3. Irene Pazos

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Noelia González-Polo

    Instituto de Biología Funcional y Genómica, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. David Gil-Carton

    Structural Biology Unit, Cooperative Center for Research in Biosciences CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Ana Garcia Duran

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Sébastien Tosi

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Oriol Gallego

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    oriol.gallego@irbbarcelona.org
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Calvo

    Instituto de Biología Funcional y Genómica, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Carlos Fernández-Tornero

    Centro de Investigaciones Biológicas, Madrid, Spain
    For correspondence
    cftornero@cib.csic.es
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministerio de Economía y Competitividad (BFU2013-48374-P)

  • Carlos Fernández-Tornero

Fundación Ramón Areces (-)

  • Carlos Fernández-Tornero

Ministerio de Economía y Competitividad (RYC-2011-07967)

  • Oriol Gallego

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Torreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,300
    views
  • 772
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva Torreira
  2. Jaime Alegrio Louro
  3. Irene Pazos
  4. Noelia González-Polo
  5. David Gil-Carton
  6. Ana Garcia Duran
  7. Sébastien Tosi
  8. Oriol Gallego
  9. Olga Calvo
  10. Carlos Fernández-Tornero
(2017)
The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription
eLife 6:e20832.
https://doi.org/10.7554/eLife.20832

Share this article

https://doi.org/10.7554/eLife.20832

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.