Deletion of the MAD2L1 spindle assembly checkpoint gene is tolerated in mouse models of acute T-cell lymphoma and hepatocellular carcinoma

  1. Floris Foijer  Is a corresponding author
  2. Lee A Albacker
  3. Bjorn Bakker
  4. Diana C Spierings
  5. Ying Yue
  6. Stephanie Z Xie
  7. Stephanie H Davis
  8. Annegret Lutum-Jehle
  9. Darin Takemoto
  10. Brian Hare
  11. Brinley Furey
  12. Roderick T Bronson
  13. Peter M Lansdorp
  14. Allan Bradley
  15. Peter K Sorger  Is a corresponding author
  1. University Medical Center Groningen, Netherlands
  2. Harvard Medical School, United States
  3. University Health Network, Canada
  4. Vertex Pharmaceuticals Incorporated, United States
  5. BC Cancer Agency, Canada
  6. Wellcome Trust Sanger Institute, United Kingdom

Abstract

Chromosome instability (CIN) is deleterious to normal cells because of the burden of aneuploidy. However, most human solid tumors have an abnormal karyotype implying that gain and loss of chromosomes by cancer cells confers a selective advantage. CIN can be induced in the mouse by inactivating the spindle assembly checkpoint. This is lethal in the germline but we show here that adult T cells and hepatocytes can survive conditional inactivation of the Mad2l1 SAC gene and resulting CIN. This causes rapid onset of acute lymphoblastic leukemia (T-ALL) and progressive development of hepatocellular carcinoma (HCC), both lethal diseases. The resulting DNA copy number variation and patterns of chromosome loss and gain are tumor-type specific, suggesting differential selective pressures on the two tumor cell types.

Data availability

The following data sets were generated
    1. Albacker
    (2015) Cytogenetic aberrations in Hepatocellular adenoma and carcinoma
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE63100).
    1. Albacker
    (2015) Hepatocellular adenoma/carcinoma from Mad2 deficient hepatocytes
    Publicly available at the NCBI Sequence Read Archive (accession no: SRA191233).
The following previously published data sets were used
    1. National Cancer Institute
    (2017) TGCA
    https://cancergenome.nih.gov.

Article and author information

Author details

  1. Floris Foijer

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    For correspondence
    f.foijer@umcg.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0989-3127
  2. Lee A Albacker

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bjorn Bakker

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Diana C Spierings

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Ying Yue

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephanie Z Xie

    Princess Margaret and Toronto General Hospitals, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephanie H Davis

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0022-4210
  8. Annegret Lutum-Jehle

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Darin Takemoto

    Vertex Pharmaceuticals Incorporated, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Brian Hare

    Vertex Pharmaceuticals Incorporated, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Brinley Furey

    Vertex Pharmaceuticals Incorporated, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Roderick T Bronson

    Rodent Histopathology Core Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Peter M Lansdorp

    Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Allan Bradley

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Peter K Sorger

    Department of Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    peter_sorger@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute for Health Research (CA084179)

  • Lee A Albacker
  • Ying Yue
  • Stephanie H Davis
  • Peter K Sorger

National Institute for Health Research (CA139980)

  • Lee A Albacker
  • Ying Yue
  • Stephanie H Davis
  • Peter K Sorger

KWF Kankerbestrijding (2012-RUG-5549)

  • Floris Foijer
  • Bjorn Bakker

H2020 European Research Council (ERC advanced ROOTS)

  • Diana C Spierings
  • Peter M Lansdorp

European Molecular Biology Organization (Longterm fellowship)

  • Floris Foijer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were kept in pathogen-free housing under guidelines approved by the Center for Animal Resources and Comparative Medicine at Harvard Medical School or at the Wellcome Trust Sanger Institute. Animal protocols were approved by the Massachusetts Institute of Technology, Harvard Medical School Committees on Animal Care (IACUC numbers I04272 and IS00000178), UK Home Office, and UMCG animal facility (DEC 6369).

Copyright

© 2017, Foijer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,437
    views
  • 442
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.20873

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.