Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex

  1. Colin Echeverría Aitken
  2. Petra Beznosková
  3. Vladislava Vlčkova
  4. Wen-Ling Chiu
  5. Fujun Zhou
  6. Leoš Shivaya Valášek  Is a corresponding author
  7. Alan G Hinnebusch  Is a corresponding author
  8. Jon R Lorsch  Is a corresponding author
  1. National Institutes of Health, United States
  2. Institute of Microbiology ASCR, Czech Republic
  3. PharmaEssentia Corporation, Taiwan

Abstract

Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncover a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA.

Article and author information

Author details

  1. Colin Echeverría Aitken

    Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Petra Beznosková

    Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Prague, Czech Republic
    Competing interests
    No competing interests declared.
  3. Vladislava Vlčkova

    Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Prague, Czech Republic
    Competing interests
    No competing interests declared.
  4. Wen-Ling Chiu

    PharmaEssentia Corporation, Taipei, Taiwan
    Competing interests
    No competing interests declared.
  5. Fujun Zhou

    Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Leoš Shivaya Valášek

    Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Prague, Czech Republic
    For correspondence
    valasekl@biomed.cas.cz
    Competing interests
    No competing interests declared.
  7. Alan G Hinnebusch

    Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    For correspondence
    ahinnebusch@nih.gov
    Competing interests
    Alan G Hinnebusch, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1627-8395
  8. Jon R Lorsch

    Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    For correspondence
    jon.lorsch@nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4521-4999

Funding

National Institutes of Health (Intramural Research Program)

  • Colin Echeverría Aitken
  • Wen-Ling Chiu
  • Fujun Zhou
  • Alan G Hinnebusch
  • Jon R Lorsch

Wellcome (090812/B/09/Z)

  • Colin Echeverría Aitken
  • Leoš Shivaya Valášek

Centrum of Excellence of the Czech Science Foundation (P305/12/G034)

  • Colin Echeverría Aitken
  • Leoš Shivaya Valášek

Leukemia and Lymphoma Society (5199-12)

  • Colin Echeverría Aitken

National Institutes of Health (GM62128)

  • Jon R Lorsch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Colin Echeverría Aitken
  2. Petra Beznosková
  3. Vladislava Vlčkova
  4. Wen-Ling Chiu
  5. Fujun Zhou
  6. Leoš Shivaya Valášek
  7. Alan G Hinnebusch
  8. Jon R Lorsch
(2016)
Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex
eLife 5:e20934.
https://doi.org/10.7554/eLife.20934

Share this article

https://doi.org/10.7554/eLife.20934

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.