Abstract

Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.

Article and author information

Author details

  1. Matthew Grove

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyukmin Kim

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maryline Santerre

    FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander J Krupka

    Department of Bioengineering, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Seung Baek Han

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jinbin Zhai

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer Y Cho

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Raehee Park

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michele Harris

    Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Seonhee Kim

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bassel E Sawaya

    FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shin H Kang

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Mary F Barbe

    Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Seo-Hee Cho

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Michel A Lemay

    Department of Bioengineering, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Young-Jin Son

    Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
    For correspondence
    yson@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775

Funding

National Institute of Neurological Disorders and Stroke (NS079631)

  • Young-Jin Son

Shriners Hospitals for Children (research grant,86600)

  • Young-Jin Son

National Institute of Neurological Disorders and Stroke (NS076401)

  • Bassel E Sawaya

National Institute of Mental Health (MH093331)

  • Bassel E Sawaya

National Institute of Neurological Disorders and Stroke (NS095070)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4254, #4255) of the Temple University.

Copyright

© 2017, Grove et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,880
    views
  • 795
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Grove
  2. Hyukmin Kim
  3. Maryline Santerre
  4. Alexander J Krupka
  5. Seung Baek Han
  6. Jinbin Zhai
  7. Jennifer Y Cho
  8. Raehee Park
  9. Michele Harris
  10. Seonhee Kim
  11. Bassel E Sawaya
  12. Shin H Kang
  13. Mary F Barbe
  14. Seo-Hee Cho
  15. Michel A Lemay
  16. Young-Jin Son
(2017)
YAP/TAZ initiate and maintain Schwann cell myelination
eLife 6:e20982.
https://doi.org/10.7554/eLife.20982

Share this article

https://doi.org/10.7554/eLife.20982

Further reading

    1. Neuroscience
    Matthew Grove, Hyunkyoung Lee ... Young-Jin Son
    Research Advance Updated

    Previously we showed that YAP/TAZ promote not only proliferation but also differentiation of immature Schwann cells (SCs), thereby forming and maintaining the myelin sheath around peripheral axons (Grove et al., 2017). Here we show that YAP/TAZ are required for mature SCs to restore peripheral myelination, but not to proliferate, after nerve injury. We find that YAP/TAZ dramatically disappear from SCs of adult mice concurrent with axon degeneration after nerve injury. They reappear in SCs only if axons regenerate. YAP/TAZ ablation does not impair SC proliferation or transdifferentiation into growth promoting repair SCs. SCs lacking YAP/TAZ, however, fail to upregulate myelin-associated genes and completely fail to remyelinate regenerated axons. We also show that both YAP and TAZ are redundantly required for optimal remyelination. These findings suggest that axons regulate transcriptional activity of YAP/TAZ in adult SCs and that YAP/TAZ are essential for functional regeneration of peripheral nerve.

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.