Molecular basis of outer kinetochore assembly on CENP-T

  1. Pim J Huis in 't Veld  Is a corresponding author
  2. Sadasivam Jeganathan
  3. Arsen Petrovic
  4. Priyanka Singh
  5. Juliane John
  6. Veronica Krenn
  7. Florian Weissmann
  8. Tanja Bange
  9. Andrea Musacchio  Is a corresponding author
  1. Max Planck Institute of Molecular Physiology, Germany
  2. Chemical Genomics Centre of the Max Planck Society, Germany
  3. Vienna Biocenter, Austria
  4. Vienna Biocenter, Germany

Abstract

Stable kinetochore-microtubule attachment is essential for cell division. It requires recruitment of outer kinetochore microtubule binders by centromere proteins C and T (CENP-C and CENP-T). To study the molecular requirements of kinetochore formation, we reconstituted the binding of the MIS12 and NDC80 outer kinetochore subcomplexes to CENP-C and CENP-T. Whereas CENP-C recruits a single MIS12:NDC80 complex, we show here that CENP-T binds one MIS12:NDC80 and two NDC80 complexes upon phosphorylation by the mitotic CDK1:Cyclin B complex at three distinct CENP-T sites. Visualization of reconstituted complexes by electron microscopy supports this model. Binding of CENP-C and CENP-T to MIS12 is competitive, and therefore CENP-C and CENP-T act in parallel to recruit two MIS12 and up to four NDC80 complexes. Our observations provide a molecular explanation for the stoichiometry of kinetochore components and its cell cycle regulation, and highlight how outer kinetochore modules bridge distances of well over 100 nm.

Article and author information

Author details

  1. Pim J Huis in 't Veld

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    pim.huis@mpi-dortmund.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0234-6390
  2. Sadasivam Jeganathan

    Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
    Competing interests
    No competing interests declared.
  3. Arsen Petrovic

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  4. Priyanka Singh

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  5. Juliane John

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  6. Veronica Krenn

    Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  7. Florian Weissmann

    Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Germany
    Competing interests
    No competing interests declared.
  8. Tanja Bange

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  9. Andrea Musacchio

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    andrea.musacchio@mpi-dortmund.mpg.de
    Competing interests
    Andrea Musacchio, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2362-8784

Funding

European Research Council (AdG 669686 RECEPIANCE)

  • Andrea Musacchio

Deutsche Forschungsgemeinschaft (CRC1093)

  • Andrea Musacchio

European Molecular Biology Organization (ALTF 262-2009)

  • Sadasivam Jeganathan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Huis in 't Veld et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,718
    views
  • 906
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pim J Huis in 't Veld
  2. Sadasivam Jeganathan
  3. Arsen Petrovic
  4. Priyanka Singh
  5. Juliane John
  6. Veronica Krenn
  7. Florian Weissmann
  8. Tanja Bange
  9. Andrea Musacchio
(2016)
Molecular basis of outer kinetochore assembly on CENP-T
eLife 5:e21007.
https://doi.org/10.7554/eLife.21007

Share this article

https://doi.org/10.7554/eLife.21007

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.