Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling

  1. Zane A Jaafar
  2. Akihiro Oguro
  3. Yoshikazu Nakamura
  4. Jeffrey S Kieft  Is a corresponding author
  1. Denver School of Medicine, University of Colorado, Aurora, United States
  2. The Jikei University School of Medicine, Japan
  3. The University of Tokyo, Japan

Abstract

Internal ribosome entry sites (IRESs) are important RNA-based translation initiation signals, critical for infection by many pathogenic viruses. The hepatitis C virus (HCV) IRES is the prototype for the type 3 IRESs and is also invaluable for exploring principles of eukaryotic translation initiation, in general. Current mechanistic models for the type 3 IRESs are useful but they also present paradoxes, including how they can function both with and without eukaryotic initiation factor (eIF) 2. We discovered that eIF1A is necessary for efficient activity where it stabilizes tRNA binding and inspects the codon-anticodon interaction, especially important in the IRES' eIF2-independent mode. These data support a model in which the IRES binds preassembled translation preinitiation complexes and remodels them to generate eukaryotic initiation complexes with bacterial-like features. This model explains previous data, reconciles eIF2-dependent and -independent pathways, and illustrates how RNA structure-based control can respond to changing cellular conditions.

Article and author information

Author details

  1. Zane A Jaafar

    Department of Biochemistry and Molecular Genetics, Denver School of Medicine, University of Colorado, Aurora, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Akihiro Oguro

    Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoshikazu Nakamura

    Institute of Medical Science, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey S Kieft

    Department of Biochemistry and Molecular Genetics, Denver School of Medicine, University of Colorado, Aurora, Aurora, United States
    For correspondence
    jeffrey.kieft@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3718-1891

Funding

National Institutes of Health (GM081346)

  • Jeffrey S Kieft

Howard Hughes Medical Institute (Early Career Scientist Award)

  • Jeffrey S Kieft

National Institutes of Health (GM118070)

  • Jeffrey S Kieft

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rachel Green, Johns Hopkins School of Medicine, United States

Version history

  1. Received: September 2, 2016
  2. Accepted: December 22, 2016
  3. Accepted Manuscript published: December 23, 2016 (version 1)
  4. Version of Record published: January 16, 2017 (version 2)

Copyright

© 2016, Jaafar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,638
    Page views
  • 568
    Downloads
  • 40
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zane A Jaafar
  2. Akihiro Oguro
  3. Yoshikazu Nakamura
  4. Jeffrey S Kieft
(2016)
Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling
eLife 5:e21198.
https://doi.org/10.7554/eLife.21198

Share this article

https://doi.org/10.7554/eLife.21198

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.