Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance

Abstract

BRCA1 plays a critical role in homology-directed repair (HDR) of DNA double strand breaks, and the repair defect of BRCA1-mutant cancer cells is being targeted with platinum drugs and poly (ADP-ribose) polymerase (PARP) inhibitors. We have employed relatively simple and sensitive assays to determine the function of BRCA1 variants or mutants in two HDR mechanisms, homologous recombination (HR) and single strand annealing (SSA), and in conferring resistance to cisplatin and olaparib in human cancer cells. Our results define the functionality of the top 22 patient-derived BRCA1 missense variants and the contribution of different domains of BRCA1 and its E3 ubiquitin ligase activity to HDR and drug resistance. Importantly, our results also demonstrate that the BRCA1-PALB2 interaction dictates the choice between HR and SSA. These studies establish functional and mutational landscapes of BRCA1 for HDR and therapy resistance, while revealing novel insights into BRCA1 regulatory mechanisms and HDR pathway choice.

Article and author information

Author details

  1. Rachel W Anantha

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Srilatha Simhadri

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tzeh Keong Foo

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0168-7054
  4. Susanna Miao

    Department of Genetics, School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jingmei Liu

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhiyuan Shen

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2834-0309
  7. Shridar Ganesan

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bing Xia

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    For correspondence
    xiabi@cinj.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3259-6139

Funding

National Cancer Institute (R01CA138804)

  • Bing Xia

Congressionally Directed Medical Research Programs (W81XWH-10-1-0486)

  • Rachel W Anantha

National Cancer Institute (R01CA188096)

  • Bing Xia

National Cancer Institute (R01CA169182)

  • Shridar Ganesan

National Cancer Institute (R01CA195612)

  • Zhiyuan Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Anantha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel W Anantha
  2. Srilatha Simhadri
  3. Tzeh Keong Foo
  4. Susanna Miao
  5. Jingmei Liu
  6. Zhiyuan Shen
  7. Shridar Ganesan
  8. Bing Xia
(2017)
Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance
eLife 6:e21350.
https://doi.org/10.7554/eLife.21350

Share this article

https://doi.org/10.7554/eLife.21350

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.