1. Ecology
Download icon

Carbon recovery dynamics following disturbance by selective logging in Amazonian forests

  1. Camille Piponiot  Is a corresponding author
  2. Plinio Sist
  3. Lucas Mazzei
  4. Marielos Peña-Claros
  5. Francis E Putz
  6. Ervan Rutishauser
  7. Alexander Shenkin
  8. Nataly Ascarrunz
  9. Celso P de Azevedo
  10. Christopher Baraloto
  11. Mabiane França
  12. Marcelino Guedes
  13. Eurídice N Honorio Coronado
  14. Marcus VN d'Oliveira
  15. Ademir R Ruschel
  16. Kátia E da Silva
  17. Eleneide Doff Sotta
  18. Cintia R de Souza
  19. Edson Vidal
  20. Thales AP West
  21. Bruno Hérault  Is a corresponding author
  1. Université de la Guyane, UMR EcoFoG, France
  2. Cirad, UR Forests and Societies, France
  3. Embrapa Amazônia Oriental, Brazil
  4. Wageningen University, Netherlands
  5. University of Florida, United States
  6. CarbonForExpert, Switzerland
  7. University of Oxford, United Kingdom
  8. Instituto Boliviano de Investigación Forestal, Bolivia
  9. Embrapa Amazônia Ocidental, Brazil
  10. Florida International University, United States
  11. Embrapa Amapa, Brazil
  12. Instituto de Investigaciones de la Amazonia Peruana, Peru
  13. Embrapa Acre, Brazil
  14. University of São Paulo, Brazil
  15. Cirad, UMR EcoFoG, France
Research Article
  • Cited 30
  • Views 2,525
  • Annotations
Cite this article as: eLife 2016;5:e21394 doi: 10.7554/eLife.21394

Abstract

When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors' and recruits' C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21{plus minus}3 MgC ha-1) than in the south (12{plus minus}3 MgC ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Camille Piponiot

    Université de la Guyane, UMR EcoFoG, Kourou, France
    For correspondence
    camille.piponiot@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3473-1982
  2. Plinio Sist

    Cirad, UR Forests and Societies, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas Mazzei

    Oriental, Embrapa Amazônia Oriental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Marielos Peña-Claros

    Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Francis E Putz

    Department of Biology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ervan Rutishauser

    CarbonForExpert, Hermance, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander Shenkin

    Environmental Change Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nataly Ascarrunz

    Instituto Boliviano de Investigación Forestal, Santa Cruz, Bolivia
    Competing interests
    The authors declare that no competing interests exist.
  9. Celso P de Azevedo

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Christopher Baraloto

    International Center for Tropical Botany, Florida International University, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mabiane França

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  12. Marcelino Guedes

    Embrapa Amapa, Macapa, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  13. Eurídice N Honorio Coronado

    Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2314-590X
  14. Marcus VN d'Oliveira

    Embrapa Acre, Rio Branco, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  15. Ademir R Ruschel

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  16. Kátia E da Silva

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  17. Eleneide Doff Sotta

    Embrapa Amapa, Macapa, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  18. Cintia R de Souza

    Embrapa Amazônia Ocidental, Belém, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  19. Edson Vidal

    Departamento de Ciências Florestais, University of São Paulo, Piracicaba, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  20. Thales AP West

    Department of Biology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Bruno Hérault

    Cirad, UMR EcoFoG, Kourou, France
    For correspondence
    Bruno.Herault@ecofog.gf
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABEX-0025)

  • Camille Piponiot

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: 2013/16262-4 and 2013/50718-5)

  • Edson Vidal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Susan Trumbore, Max-Planck-Institute for Biogeochemistry, Germany

Publication history

  1. Received: September 10, 2016
  2. Accepted: December 8, 2016
  3. Accepted Manuscript published: December 20, 2016 (version 1)
  4. Version of Record published: January 4, 2017 (version 2)

Copyright

© 2016, Piponiot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,525
    Page views
  • 502
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    David R M Smith et al.
    Research Article

    The human microbiome can protect against colonization with pathogenic antibiotic-resistant bacteria (ARB), but its impacts on the spread of antibiotic resistance are poorly understood. We propose a mathematical modelling framework for ARB epidemiology formalizing within-host ARB-microbiome competition, and impacts of antibiotic consumption on microbiome function. Applied to the healthcare setting, we demonstrate a trade-off whereby antibiotics simultaneously clear bacterial pathogens and increase host susceptibility to their colonization, and compare this framework with a traditional strain-based approach. At the population level, microbiome interactions drive ARB incidence, but not resistance rates, reflecting distinct epidemiological relevance of different forces of competition. Simulating a range of public health interventions (contact precautions, antibiotic stewardship, microbiome recovery therapy) and pathogens (Clostridioides difficile, methicillin-resistant Staphylococcus aureus, multidrug-resistant Enterobacteriaceae) highlights how species-specific within-host ecological interactions drive intervention efficacy. We find limited impact of contact precautions for Enterobacteriaceae prevention, and a promising role for microbiome-targeted interventions to limit ARB spread.

    1. Ecology
    Piero Amodio et al.
    Research Article

    Eurasian jays have been reported to protect their caches by responding to cues about either the visual perspective or current desire of an observing conspecific, similarly to other corvids. Here, we used established paradigms to test whether these birds can - like humans - integrate multiple cues about different mental states and perform an optimal response accordingly. Across five experiments, which also include replications of previous work, we found little evidence that our jays adjusted their caching behaviour in line with the visual perspective and current desire of another agent, neither by integrating these social cues nor by responding to only one type of cue independently. These results raise questions about the reliability of the previously reported effects and highlight several key issues affecting reliability in comparative cognition research.