Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail

  1. Johanna Ludwigsen
  2. Sabrina Pfennig
  3. Ashish K Singh
  4. Christina Schindler
  5. Nadine Harrer
  6. Ignasi Forné
  7. Martin Zacharias
  8. Felix Mueller-Planitz  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. Technische Universität München, Germany

Abstract

ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1.

Article and author information

Author details

  1. Johanna Ludwigsen

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sabrina Pfennig

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashish K Singh

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christina Schindler

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadine Harrer

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ignasi Forné

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Zacharias

    Physics Department, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Felix Mueller-Planitz

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    For correspondence
    felix.mueller-planitz@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8273-6473

Funding

Ernst Schering Foundation

  • Johanna Ludwigsen

Deutscher Akademischer Austauschdienst

  • Ashish K Singh

Deutsche Forschungsgemeinschaft (CIPSM)

  • Martin Zacharias

Deutsche Forschungsgemeinschaft (MU 3613/1-1 MU 3613/3-1 SFB 1064/1TP-A07)

  • Felix Mueller-Planitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Ludwigsen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,640
    views
  • 361
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johanna Ludwigsen
  2. Sabrina Pfennig
  3. Ashish K Singh
  4. Christina Schindler
  5. Nadine Harrer
  6. Ignasi Forné
  7. Martin Zacharias
  8. Felix Mueller-Planitz
(2017)
Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail
eLife 6:e21477.
https://doi.org/10.7554/eLife.21477

Share this article

https://doi.org/10.7554/eLife.21477

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.