
Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail
- Cited 8
- Views 1,090
- Annotations
Abstract
ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1.
Article and author information
Author details
Funding
Ernst Schering Foundation
- Johanna Ludwigsen
Deutscher Akademischer Austauschdienst
- Ashish K Singh
Deutsche Forschungsgemeinschaft (CIPSM)
- Martin Zacharias
Deutsche Forschungsgemeinschaft (MU 3613/1-1 MU 3613/3-1 SFB 1064/1TP-A07)
- Felix Mueller-Planitz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Jerry L Workman, Stowers Institute for Medical Research, United States
Publication history
- Received: September 13, 2016
- Accepted: January 20, 2017
- Accepted Manuscript published: January 21, 2017 (version 1)
- Version of Record published: February 13, 2017 (version 2)
Copyright
© 2017, Ludwigsen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,090
- Page views
-
- 323
- Downloads
-
- 8
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Download citations (links to download the citations from this article in formats compatible with various reference manager tools)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
-
- Biochemistry and Chemical Biology
- Genetics and Genomics