Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail

  1. Johanna Ludwigsen
  2. Sabrina Pfennig
  3. Ashish K Singh
  4. Christina Schindler
  5. Nadine Harrer
  6. Ignasi Forné
  7. Martin Zacharias
  8. Felix Mueller-Planitz  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. Technische Universität München, Germany

Abstract

ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1.

Article and author information

Author details

  1. Johanna Ludwigsen

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sabrina Pfennig

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashish K Singh

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christina Schindler

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadine Harrer

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ignasi Forné

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Zacharias

    Physics Department, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Felix Mueller-Planitz

    Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried, Germany
    For correspondence
    felix.mueller-planitz@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8273-6473

Funding

Ernst Schering Foundation

  • Johanna Ludwigsen

Deutscher Akademischer Austauschdienst

  • Ashish K Singh

Deutsche Forschungsgemeinschaft (CIPSM)

  • Martin Zacharias

Deutsche Forschungsgemeinschaft (MU 3613/1-1 MU 3613/3-1 SFB 1064/1TP-A07)

  • Felix Mueller-Planitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Ludwigsen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,668
    views
  • 363
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johanna Ludwigsen
  2. Sabrina Pfennig
  3. Ashish K Singh
  4. Christina Schindler
  5. Nadine Harrer
  6. Ignasi Forné
  7. Martin Zacharias
  8. Felix Mueller-Planitz
(2017)
Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail
eLife 6:e21477.
https://doi.org/10.7554/eLife.21477

Share this article

https://doi.org/10.7554/eLife.21477

Further reading

    1. Biochemistry and Chemical Biology
    Adrian CD Fuchs
    Research Article

    The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.