Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks

  1. Damian M Herz
  2. Huiling Tan
  3. John-Stuart Brittain
  4. Petra Fischer
  5. Binith Cheeran
  6. Alexander L Green
  7. James FitzGerald
  8. Tipu Z Aziz
  9. Keyoumars Ashkan
  10. Simon Little
  11. Thomas Foltynie
  12. Patricia Limousin
  13. Ludvic Zrinzo
  14. Rafal Bogacz
  15. Peter Brown  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Kings College London, United Kingdom
  3. University College London Institute of Neurology, United Kingdom

Abstract

Optimal decision-making requires balancing fast but error-prone and more accurate but slower decisions through adjustments of decision thresholds. Here, we demonstrate two distinct correlates of such speed-accuracy adjustments by recording subthalamic nucleus (STN) activity and electroencephalography in eleven Parkinson’s disease patients during a perceptual decision-making task; STN low-frequency oscillatory (LFO) activity (2-8 Hz), coupled to activity at prefrontal electrode Fz, and STN beta activity (13-30 Hz) coupled to electrodes C3/C4 close to motor cortex. These two correlates not only differed in their cortical topography and spectral characteristics, but also in the relative timing of recruitment and in their precise relationship with decision thresholds. Increases of STN LFO power preceding the response predicted increased thresholds only after accuracy instructions, while cue-induced reductions of STN beta power decreased thresholds irrespective of instructions. These findings indicate that distinct neural mechanisms determine whether a decision will be made in haste or with caution.

Data availability

The following data sets were generated
    1. Damian Herz
    (2017) Neural correlates of speed-accuracy adjustments in the subthalamic nucleus
    Publicly available at Oxford University Research Archive (uuid: 09bef38c-999f-4fb7-aa46-14eda3123571).

Article and author information

Author details

  1. Damian M Herz

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Huiling Tan

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8038-3029
  3. John-Stuart Brittain

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Petra Fischer

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5585-8977
  5. Binith Cheeran

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander L Green

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. James FitzGerald

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Tipu Z Aziz

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Keyoumars Ashkan

    Department of Neurosurgery, Kings College Hospital, Kings College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Simon Little

    Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas Foltynie

    Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Patricia Limousin

    Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ludvic Zrinzo

    Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Rafal Bogacz

    Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Peter Brown

    Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
    For correspondence
    peter.brown@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5201-3044

Funding

Medical Research Council (MC_UU_12024/1)

  • Peter Brown

Horizon 2020 Framework Programme (655605)

  • Damian M Herz

Parkinson Appeal UK

  • Thomas Foltynie
  • Patricia Limousin
  • Ludvic Zrinzo

Monument Trust

  • Thomas Foltynie
  • Patricia Limousin
  • Ludvic Zrinzo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: In accordance with the declaration of Helsinki, participants gave written informed consent to participate in the study, which was approved by the local ethics committee (Oxfordshire REC A).

Copyright

© 2017, Herz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,886
    views
  • 664
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Damian M Herz
  2. Huiling Tan
  3. John-Stuart Brittain
  4. Petra Fischer
  5. Binith Cheeran
  6. Alexander L Green
  7. James FitzGerald
  8. Tipu Z Aziz
  9. Keyoumars Ashkan
  10. Simon Little
  11. Thomas Foltynie
  12. Patricia Limousin
  13. Ludvic Zrinzo
  14. Rafal Bogacz
  15. Peter Brown
(2017)
Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks
eLife 6:e21481.
https://doi.org/10.7554/eLife.21481

Share this article

https://doi.org/10.7554/eLife.21481

Further reading

    1. Neuroscience
    Raven Star Wallace, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.

    1. Neuroscience
    Mi-Seon Kong, Ethan Ancell ... Larry S Zweifel
    Research Article

    The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US. Valence and salience encoding of the conditioned stimulus (CS) was also observed, albeit to a lesser extent. These findings show that the CeA is a site of convergence for encoding oppositely valenced US information.