SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks

  1. Jaime Lopez-Mosqueda
  2. Karthik Maddi
  3. Stefan Prgomet
  4. Sissy Kalayil
  5. Ivana Marinovic-Terzic
  6. Janos Terzic
  7. Ivan Dikic  Is a corresponding author
  1. Goethe University School of Medicine, Germany
  2. University of Split, Croatia

Abstract

Ruijs-Aalfs syndrome is a segmental progeroid syndrome resulting from mutations in the SPRTN gene. Cells derived from patients with SPRTN mutations elicit genomic instability and persons afflicted with this syndrome developed hepatocellular carcinoma. Here we describe the molecular mechanism by which SPRTN contributes to genome stability and normal cellular homeostasis. We show that SPRTN is a DNA-dependent mammalian protease required for resolving cytotoxic DNA-protein crosslinks (DPCs); a function that had only been attributed to the metalloprotease Wss1 in budding yeast. We provide genetic evidence that SPRTN and Wss1 function distinctly in vivo to resolve DPCs. Upon DNA or ubiquitin binding, SPRTN can elicit proteolytic activity; cleaving DPC substrates or itself. SPRTN null cells or cells derived from patients with Ruijs-Aalfs syndrome are impaired in the resolution of covalent DPCs in vivo. Collectively, SPRTN is a mammalian protease required for resolving DNA-protein crosslinks in vivo whose function is compromised in Ruijs-Aalfs syndrome patients.

Article and author information

Author details

  1. Jaime Lopez-Mosqueda

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0301-1971
  2. Karthik Maddi

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  3. Stefan Prgomet

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  4. Sissy Kalayil

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  5. Ivana Marinovic-Terzic

    Department of Immunology and Medical Genetics, School of Medicine, University of Split, Split, Croatia
    Competing interests
    No competing interests declared.
  6. Janos Terzic

    Department of Immunology an Medical Genetics, School of Medicine, University of Split, Split, Croatia
    Competing interests
    No competing interests declared.
  7. Ivan Dikic

    Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
    For correspondence
    dikic@biochem2.uni-frankfurt.de
    Competing interests
    Ivan Dikic, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8156-9511

Funding

Deutsche Forschungsgemeinschaft (SFB1177)

  • Ivan Dikic

Deutsche Forschungsgemeinschaft (CEF-MC)

  • Ivan Dikic

Human Frontier Science Program (Postdoctoral fellowship)

  • Jaime Lopez-Mosqueda

LOEWE Zentrum CGT and Loewe Network Ub Net (Fellowships)

  • Ivan Dikic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lopez-Mosqueda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,533
    views
  • 912
    downloads
  • 132
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jaime Lopez-Mosqueda
  2. Karthik Maddi
  3. Stefan Prgomet
  4. Sissy Kalayil
  5. Ivana Marinovic-Terzic
  6. Janos Terzic
  7. Ivan Dikic
(2016)
SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks
eLife 5:e21491.
https://doi.org/10.7554/eLife.21491

Share this article

https://doi.org/10.7554/eLife.21491

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.