Developmental Neuroscience: Re-utilization of a transcription factor

  1. Filipe Pinto-Teixeira  Is a corresponding author
  2. Claude Desplan  Is a corresponding author
  1. New York University, United States
  2. New York University Abu Dhabi, United Arab Emirates

A neuronal stem cell is a cell that divides to produce another neuronal stem cell plus a cell that can go on to become any one of the different types of neurons or glial cells that are found in the nervous system. Understanding how this happens is a major challenge in developmental neuroscience. In both vertebrates and invertebrates, the capacity of neuronal stem cells to produce specific cell types is determined by a combination of spatial patterning factors, essentially determined by their birth location, and temporal patterning, in which transcription factors that are expressed sequentially in the neuronal stem cells determine the kind of cells that are produced during a given time window (reviewed in Kohwi and Doe, 2013). Now, in eLife, Johannes Stratmann, Hugo Gabilondo, Jonathan Benito-Sipos and Stefan Thor – who are based at Linköping University and Universidad Autónoma de Madrid – report that Krüppel, a transcription factor that is involved in temporal patterning, has a bigger role than was previously realized (Stratmann et al., 2016).

In Drosophila, neuronal stem cells, known as neuroblasts, in the ventral nerve cord (Isshiki et al., 2001), the central brain (Bayraktar and Doe, 2013) and the optic lobes (Li et al., 2013) express a series of different temporal transcription factors as they divide, and this temporal patterning dictates the identity of the neurons that are produced over time. In the ventral nerve cord, Hunchback is expressed first, followed by Krüppel, Pdm, Castor and Grainyhead. Moreover, during the time window in which a given transcription factor is expressed, two or more different types of neurons can be produced. For example, at the end of the Castor window, a neuroblast called NB5-6 divides four times to sequentially produce four different types of neurons: Tv1, Tv2, Tv3 and Tv4 neurons.

The identity of each neuron formed during the Castor window is established by a complex web of transcriptional cascades that depend on Castor and other transcription factors (see Figure 1; Baumgardt et al., 2009; Baumgardt et al., 2007; Benito-Sipos et al., 2011). However, many of the details of the mechanisms that switch these cascades on and off at different times are unknown. Stratmann et al. shed light on the subject by looking at the role of Krüppel (Kr). The neuroblast being studied will already have passed through the Kr temporal window, but this transcription factor is expressed again in the neurons that are produced during the Castor window.

Establishing four different types of neurons in the Castor window.

Castor (Cas) is a temporal transcription factor expressed in NB5-6 neuroblasts. It activates the transcription factor Collier (Col), which then promotes the expression of Apterous and Eyes absent (Ap/Eya). In Tv1, Col and Ap/Eya form a feedforward loop to activate the neuropeptide called Nlpl1. This results in the neuroblast producing a Tv1 neuron (top). In Tv2/3 neurons, Cas activates a feedforward loop consisting of Squeeze (Sqz), Nab and Seven up (Svp) that inhibits Col, blocking the feedforward loop that leads to Nplp1 expression and allowing the establishment of the Tv2/3 identity (middle). In Tv4, Cas promotes the gradual expression of the next temporal transcription factor, Grainyhead (Grh), which inhibits Cas and Svp (thus blocking Tv2/Tv3 specification), while allowing the formation of a feedforward loop involving Ap/Eya and BMP that promotes the expression of the neuropeptide FMRFa. The neuroblast now produces a Tv4 neuron. Stratmann et al. explored the role of another temporal transcription factor, Krüppel (Kr), during the Cas window. They found that, at first, Kr inhibits Svp: this allows the establishment of the Col>Ap/Eya>Nplp1 feedforward loop that leads to the formation of Tv1 neurons (top; key players shown in blue). Later in the window, the Cas>Sqz>Nab feedforward loop inhibits both Kr and Col, as does Svp, which allows Tv2 and Tv3 neurons to form (middle; key players shown in red). Later in the window, a putative factor helps Grh to repress Svp, Kr remains inhibited by Sqz and Nab, and Grh promotes the expression of FMRFa that specifies Tv4 (bottom; key players shown in green). BMP: bone morphogenetic protein.

The default fate for neuroblasts at the end of the Castor window is to produce Tv2/3 neurons. However, Stratmann et al. show that Castor first activates Kr expression specifically in Tv1 neurons, which in turn inhibits expression of the nuclear hormone receptor Seven up (Svp). This receptor normally inhibits the expression of a transcription factor called Collier: however, the inhibition of Svp allows for the establishment of a feedforward loop downstream of Collier that leads to the expression of the neuropeptide Nplp1 and the establishment of Tv1 neuron identity (Figure 1).

As the neuroblast divides to produce Tv2 and Tv3, Svp and two other proteins – Squeeze (Sqz) and Nab – are expressed: this all leads to the inhibition of Kr and the repression of Collier. As a consequence the Nplp1 feedforward loop is inhibited and the default Ap/Eya identity in Tv2/3 is established. In the last division, as the neuroblasts gets ready to switch to the next temporal window, the increased expression of Grainyhead (the next temporal transcription factor in the series) has two effects: it promotes the expression of a neuropeptide called FMRFa, and it helps to inhibit Svp expression. The end result is to prevent the establishment of the generic Tv2/3 fate to promote the Tv4 identity. However, Grainyhead cannot inhibit Svp on its own, so another factor must also be expressed during this period to help it repress Svp (Figure 1).

The implications of these observations extend well beyond the details of the NB5-6 lineage and raise additional questions: How is Kr and Sqz expression scheduled? And how is Nab expression delayed to only be present in Tv1? Such delay could be explained by the formation of a feedforward loop in which Castor and Sqz combine to promote Nab expression (Baumgardt et al., 2009). The fact that Cas is only expressed at relatively low levels in Tv1 could also explain the absence of Nab expression in this neuron. Understanding such timing mechanisms will define the logic of this gene network, from the early expression of spatial and temporal transcription factors in the neuroblasts to the expression of the terminal differentiation genes that assign unique identities to neurons.

Many of the factors that are active during the Castor window are also active during other windows. As we have seen, Krüppel is active in neuroblasts during the Kr window and is active again in Tv1 neurons produced during the Castor window. Sub-temporal factors can also have multiple roles: Svp, for example, is expressed early in neuroblasts to regulate the transition from the Hunchback window to the Krüppel window (Kanai et al., 2005), and is also expressed in Tv neurons produced during the Castor window. This raises the question of how common such dual roles are among temporal genes.

The expression of Collier requires the input of several spatial transcription factors (Gabilondo et al., 2016; Karlsson et al., 2010), but this is not the case for the temporal factors Castor and Grainyhead and for the sub-temporal factors (Kr, Sqz, Nab and Svp) downstream of Castor. This suggests that the activation of the feedforward loops, but not of temporal factors, can depend on the activity of spatial factors expressed earlier during neuroblast formation. It will be interesting to test how the earlier expression of spatial factors modulates the DNA landscape of neuroblasts, and their progeny neurons, to control their competence to respond to the activity of temporal and sub-temporal transcription factors. If we can find the answers to such fundamental questions, it will improve our ability to produce specific neurons by controlling the fate of neural stem cells.

References

Article and author information

Author details

  1. Filipe Pinto-Teixeira

    1. Department of Biology, New York University, New York, United States
    2. Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    For correspondence
    filipepts@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9960-0035
  2. Claude Desplan

    1. Department of Biology, New York University, New York, United States
    2. Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    For correspondence
    cd38@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6914-1413

Publication history

  1. Version of Record published:

Copyright

© 2016, Pinto-Teixeira et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,416
    views
  • 133
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filipe Pinto-Teixeira
  2. Claude Desplan
(2016)
Developmental Neuroscience: Re-utilization of a transcription factor
eLife 5:e21522.
https://doi.org/10.7554/eLife.21522
  1. Further reading

Further reading

    1. Developmental Biology
    Laurel A Rohde, Arianne Bercowsky-Rama ... Andrew C Oates
    Research Article

    Rhythmic and sequential segmentation of the growing vertebrate body relies on the segmentation clock, a multi-cellular oscillating genetic network. The clock is visible as tissue-level kinematic waves of gene expression that travel through the presomitic mesoderm (PSM) and arrest at the position of each forming segment. Here, we test how this hallmark wave pattern is driven by culturing single maturing PSM cells. We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding similarity in the relative slowing of oscillations and arrest in concert with differentiation. This shows that cell-extrinsic signals are not required by the cells to instruct the developmental program underlying the wave pattern. We show that a cell-autonomous timing activity initiates during cell exit from the tailbud, then runs down in the anterior-ward cell flow in the PSM, thereby using elapsed time to provide positional information to the clock. Exogenous FGF lengthens the duration of the cell-intrinsic timer, indicating extrinsic factors in the embryo may regulate the segmentation clock via the timer. In sum, our work suggests that a noisy cell-autonomous, intrinsic timer drives the slowing and arrest of oscillations underlying the wave pattern, while extrinsic factors in the embryo tune this timer’s duration and precision. This is a new insight into the balance of cell-intrinsic and -extrinsic mechanisms driving tissue patterning in development.

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.