TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells

  1. Debjani Pal
  2. Anja Pertot
  3. Nitin H Shirole
  4. Zhan Yao
  5. Naishitha Anaparthy
  6. Tyler Garvin
  7. Hilary Cox
  8. Kenneth Chang
  9. Fred Rollins
  10. Jude Kendall
  11. Leyla Edwards
  12. Vijay A. Singh
  13. Gary C. Stone
  14. Michael C. Schatz
  15. James Hicks
  16. Gregory Hannon
  17. Raffaella Sordella  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. Huntington Hospital, Northwell Health, United States
  3. Cold Spring Harbor Laboratory/ Johns Hopkins University, United States
  4. Cold Spring Harbor Laboratory/ University of Southern California, United States
  5. University of Cambridge, United Kingdom
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/21615/elife-21615-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debjani Pal
  2. Anja Pertot
  3. Nitin H Shirole
  4. Zhan Yao
  5. Naishitha Anaparthy
  6. Tyler Garvin
  7. Hilary Cox
  8. Kenneth Chang
  9. Fred Rollins
  10. Jude Kendall
  11. Leyla Edwards
  12. Vijay A. Singh
  13. Gary C. Stone
  14. Michael C. Schatz
  15. James Hicks
  16. Gregory Hannon
  17. Raffaella Sordella
(2017)
TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells
eLife 6:e21615.
https://doi.org/10.7554/eLife.21615