TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells

  1. Debjani Pal
  2. Anja Pertot
  3. Nitin H Shirole
  4. Zhan Yao
  5. Naishitha Anaparthy
  6. Tyler Garvin
  7. Hilary Cox
  8. Kenneth Chang
  9. Fred Rollins
  10. Jude Kendall
  11. Leyla Edwards
  12. Vijay A. Singh
  13. Gary C. Stone
  14. Michael C. Schatz
  15. James Hicks
  16. Gregory Hannon
  17. Raffaella Sordella  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. Huntington Hospital, Northwell Health, United States
  3. Cold Spring Harbor Laboratory/ Johns Hopkins University, United States
  4. Cold Spring Harbor Laboratory/ University of Southern California, United States
  5. University of Cambridge, United Kingdom

Abstract

Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable due to intrinsic defects in their DNA repair capabilities. In fact, in CD44+/CD24- cells constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are critical in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Debjani Pal

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anja Pertot

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nitin H Shirole

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhan Yao

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Naishitha Anaparthy

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tyler Garvin

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hilary Cox

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenneth Chang

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Fred Rollins

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jude Kendall

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Leyla Edwards

    Pathology, Huntington Hospital, Northwell Health, Huntington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vijay A. Singh

    Pathology, Huntington Hospital, Northwell Health, Huntington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Gary C. Stone

    Pathology, Huntington Hospital, Northwell Health, Huntington, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Michael C. Schatz

    Quantitative Biology, Cold Spring Harbor Laboratory/ Johns Hopkins University, Cold Spring Harbor/ Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. James Hicks

    Quantitative Biology, Cold Spring Harbor Laboratory/ University of Southern California, Cold Spring Harbor/ Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Gregory Hannon

    cruk cambridge insititue, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Raffaella Sordella

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    sordella@cshl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9745-1227

Funding

National Cancer Institute (NCI P01 CA129243-06)

  • Raffaella Sordella

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rik Derynck, University of California, San Francisco, United States

Ethics

Human subjects: Informed consent was received from all patients who participated in the study 14-496 (PI V Singh) .

Version history

  1. Received: September 17, 2016
  2. Accepted: January 14, 2017
  3. Accepted Manuscript published: January 16, 2017 (version 1)
  4. Version of Record published: March 10, 2017 (version 2)

Copyright

© 2017, Pal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,834
    views
  • 765
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debjani Pal
  2. Anja Pertot
  3. Nitin H Shirole
  4. Zhan Yao
  5. Naishitha Anaparthy
  6. Tyler Garvin
  7. Hilary Cox
  8. Kenneth Chang
  9. Fred Rollins
  10. Jude Kendall
  11. Leyla Edwards
  12. Vijay A. Singh
  13. Gary C. Stone
  14. Michael C. Schatz
  15. James Hicks
  16. Gregory Hannon
  17. Raffaella Sordella
(2017)
TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells
eLife 6:e21615.
https://doi.org/10.7554/eLife.21615

Share this article

https://doi.org/10.7554/eLife.21615

Further reading

    1. Cancer Biology
    Célia Guérin, David Tulasne
    Review Article

    Tyrosine kinase inhibitors (TKI) directed against MET have been recently approved to treat advanced non-small cell lung cancer (NSCLC) harbouring activating MET mutations. This success is the consequence of a long characterization of MET mutations in cancers, which we propose to outline in this review. MET, a receptor tyrosine kinase (RTK), displays in a broad panel of cancers many deregulations liable to promote tumour progression. The first MET mutation was discovered in 1997, in hereditary papillary renal cancer (HPRC), providing the first direct link between MET mutations and cancer development. As in other RTKs, these mutations are located in the kinase domain, leading in most cases to ligand-independent MET activation. In 2014, novel MET mutations were identified in several advanced cancers, including lung cancers. These mutations alter splice sites of exon 14, causing in-frame exon 14 skipping and deletion of a regulatory domain. Because these mutations are not located in the kinase domain, they are original and their mode of action has yet to be fully elucidated. Less than five years after the discovery of such mutations, the efficacy of a MET TKI was evidenced in NSCLC patients displaying MET exon 14 skipping. Yet its use led to a resistance mechanism involving acquisition of novel and already characterized MET mutations. Furthermore, novel somatic MET mutations are constantly being discovered. The challenge is no longer to identify them but to characterize them in order to predict their transforming activity and their sensitivity or resistance to MET TKIs, in order to adapt treatment.

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.