Abstract

Repetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among these factors and pathways underlies the importance of safeguarding the genome through multiple means.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Alicia N McMurchy

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7033-8790
  2. Przemyslaw Stempor

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Tessa Gaarenstroom

    Department of Genetics, The Gurdon Institute, University of Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Brian Wysolmerski

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Yan Dong

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Darya Aussianikava

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Alex Appert

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Ni Huang

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8849-038X
  9. Paulina Kolasinska-Zwierz

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  10. Alexandra Sapetschnig

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  11. Eric A Miska

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4450-576X
  12. Julie Ahringer

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ja219@cam.ac.uk
    Competing interests
    Julie Ahringer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7074-4051

Funding

Wellcome (54523)

  • Julie Ahringer

Wellcome (101863)

  • Julie Ahringer

Canadian Institutes of Health Research

  • Alicia N McMurchy

Cancer Research UK (C13474/A18583)

  • Eric A Miska

Human Frontier Science Program

  • Alexandra Sapetschnig

Wellcome (104640/Z/14/Z)

  • Eric A Miska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edith Heard, Institut Curie, France

Version history

  1. Received: September 20, 2016
  2. Accepted: March 10, 2017
  3. Accepted Manuscript published: March 15, 2017 (version 1)
  4. Version of Record published: April 18, 2017 (version 2)
  5. Version of Record updated: October 5, 2017 (version 3)

Copyright

© 2017, McMurchy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,654
    Page views
  • 1,126
    Downloads
  • 69
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alicia N McMurchy
  2. Przemyslaw Stempor
  3. Tessa Gaarenstroom
  4. Brian Wysolmerski
  5. Yan Dong
  6. Darya Aussianikava
  7. Alex Appert
  8. Ni Huang
  9. Paulina Kolasinska-Zwierz
  10. Alexandra Sapetschnig
  11. Eric A Miska
  12. Julie Ahringer
(2017)
A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress
eLife 6:e21666.
https://doi.org/10.7554/eLife.21666

Share this article

https://doi.org/10.7554/eLife.21666

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.