Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection

  1. Tuan V Bui
  2. Nicolas Stifani
  3. Turgay Akay
  4. Robert M Brownstone  Is a corresponding author
  1. University of Ottawa, Canada
  2. Dalhousie University, Canada
  3. University College London, United Kingdom

Abstract

The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery.

Article and author information

Author details

  1. Tuan V Bui

    Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolas Stifani

    Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8584-9561
  3. Turgay Akay

    Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert M Brownstone

    Dalhousie University, University College London, Halifax, United Kingdom
    For correspondence
    R.Brownstone@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5135-2725

Funding

Canadian Institutes of Health Research (Operating grant, FRN 79413)

  • Robert M Brownstone

Nova Scotia Health Research Foundation (Post-doctoral fellowship)

  • Tuan V Bui

Natural Sciences and Engineering Research Council of Canada (Discovery grant, RGPIN-2015-06403)

  • Tuan V Bui

Canada Research Chairs (Research Chair)

  • Robert M Brownstone

Canadian Institutes of Health Research (Fellowship)

  • Tuan V Bui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the University Committee on Laboratory Animals of Dalhousie University (protocol 13-143) and conform to the guidelines put forth by the Canadian Council for Animal Care.

Reviewing Editor

  1. Ole Kiehn, Karolinska Institutet, Sweden

Publication history

  1. Received: September 21, 2016
  2. Accepted: December 12, 2016
  3. Accepted Manuscript published: December 15, 2016 (version 1)
  4. Accepted Manuscript updated: December 22, 2016 (version 2)
  5. Version of Record published: January 6, 2017 (version 3)

Copyright

© 2016, Bui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,544
    Page views
  • 484
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tuan V Bui
  2. Nicolas Stifani
  3. Turgay Akay
  4. Robert M Brownstone
(2016)
Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection
eLife 5:e21715.
https://doi.org/10.7554/eLife.21715

Further reading

    1. Neuroscience
    Sudeshna Das Chakraborty et al.
    Research Article

    Understanding neuronal representations of odor-evoked activities and their progressive transformation from the sensory level to higher brain centers features one of the major aims in olfactory neuroscience. Here, we investigated how odor information is transformed and represented in higher-order neurons of the lateral horn, one of the higher olfactory centers implicated in determining innate behavior, using Drosophila melanogaster. We focused on a subset of third-order glutamatergic lateral horn neurons (LHNs) and characterized their odor coding properties in relation to their presynaptic partner neurons, the projection neurons (PNs) by two-photon functional imaging. We show that odors evoke reproducible, stereotypic, and odor-specific response patterns in LHNs. Notably, odor-evoked responses in these neurons are valence-specific in a way that their response amplitude is positively correlated with innate odor preferences. We postulate that this valence-specific activity is the result of integrating inputs from multiple olfactory channels through second-order neurons. GRASP and micro-lesioning experiments provide evidence that glutamatergic LHNs obtain their major excitatory input from uniglomerular PNs, while they receive an odor-specific inhibition through inhibitory multiglomerular PNs. In summary, our study indicates that odor representations in glutamatergic LHNs encode hedonic valence and odor identity and primarily retain the odor coding properties of second-order neurons.

    1. Neuroscience
    Shreya Saxena et al.
    Research Article

    Learned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling. Network solutions had a consistent form, which yielded quantitative and qualitative predictions. To evaluate predictions, we analyzed motor cortex activity recorded during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.