1. Neuroscience
Download icon

Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection

  1. Tuan V Bui
  2. Nicolas Stifani
  3. Turgay Akay
  4. Robert M Brownstone  Is a corresponding author
  1. University of Ottawa, Canada
  2. Dalhousie University, Canada
  3. University College London, United Kingdom
Research Article
  • Cited 25
  • Views 2,446
  • Annotations
Cite this article as: eLife 2016;5:e21715 doi: 10.7554/eLife.21715

Abstract

The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery.

Article and author information

Author details

  1. Tuan V Bui

    Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolas Stifani

    Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8584-9561
  3. Turgay Akay

    Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert M Brownstone

    Dalhousie University, University College London, Halifax, United Kingdom
    For correspondence
    R.Brownstone@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5135-2725

Funding

Canadian Institutes of Health Research (Operating grant, FRN 79413)

  • Robert M Brownstone

Nova Scotia Health Research Foundation (Post-doctoral fellowship)

  • Tuan V Bui

Natural Sciences and Engineering Research Council of Canada (Discovery grant, RGPIN-2015-06403)

  • Tuan V Bui

Canada Research Chairs (Research Chair)

  • Robert M Brownstone

Canadian Institutes of Health Research (Fellowship)

  • Tuan V Bui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the University Committee on Laboratory Animals of Dalhousie University (protocol 13-143) and conform to the guidelines put forth by the Canadian Council for Animal Care.

Reviewing Editor

  1. Ole Kiehn, Karolinska Institutet, Sweden

Publication history

  1. Received: September 21, 2016
  2. Accepted: December 12, 2016
  3. Accepted Manuscript published: December 15, 2016 (version 1)
  4. Accepted Manuscript updated: December 22, 2016 (version 2)
  5. Version of Record published: January 6, 2017 (version 3)

Copyright

© 2016, Bui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,446
    Page views
  • 474
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Rawan AlSubaie et al.
    Research Article Updated

    Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.

    1. Cell Biology
    2. Neuroscience
    Angela Kim et al.
    Research Article Updated

    Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.