Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate

Abstract

Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here we develop a statistically-founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n=505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associate with altered expression or decreased patient survival across an independent pan-cancer sample set (n=5,454). This includes an antigen-presenting gene (CD1A), where 5'UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance.

Article and author information

Author details

  1. Malene Juul

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    For correspondence
    malene.juul.rasmussen@clin.au.dk
    Competing interests
    The authors declare that no competing interests exist.
  2. Johanna Bertl

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Qianyun Guo

    Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Morten Muhlig Nielsen

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Michał Świtnicki

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Henrik Hornshøj

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias Madsen

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Asger Hobolth

    Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Jakob Skou Pedersen

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    For correspondence
    jakob.skou@clin.au.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7236-4001

Funding

Medical Sciences (Sapere Aude Grant,#12-126439)

  • Jakob Skou Pedersen

The Danish Council for Strategic Research (#10-092320/DSF)

  • Jakob Skou Pedersen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gilean McVean, Oxford University, United Kingdom

Version history

  1. Received: September 24, 2016
  2. Accepted: March 14, 2017
  3. Accepted Manuscript published: March 31, 2017 (version 1)
  4. Accepted Manuscript updated: April 7, 2017 (version 2)
  5. Version of Record published: May 22, 2017 (version 3)

Copyright

© 2017, Juul et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,106
    Page views
  • 604
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Malene Juul
  2. Johanna Bertl
  3. Qianyun Guo
  4. Morten Muhlig Nielsen
  5. Michał Świtnicki
  6. Henrik Hornshøj
  7. Tobias Madsen
  8. Asger Hobolth
  9. Jakob Skou Pedersen
(2017)
Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate
eLife 6:e21778.
https://doi.org/10.7554/eLife.21778

Share this article

https://doi.org/10.7554/eLife.21778

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Johannes Paladini, Annalena Maier ... Stephan Grzesiek
    Research Article

    Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl’s activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.