Abstract

Surveys of microbial communities (microbiota), typically measured as relative abundance of species, have illustrated the importance of these communities in human health and disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys. We demonstrate that analyses of community-level structure can be applied to PhILR transformed data with performance on benchmarks rivaling or surpassing standard tools. Additionally, By decomposing distance in the PhILR transformed space, we identified neighboring clades that may have adapted to distinct human body sites. Decomposing variance revealed that covariation of bacterial clades within human body sites increases with phylogenetic relatedness. Together, these findings illustrate how the PhILR transform combines statistical and phylogenetic models to overcome compositional data challenges and enable evolutionary insights relevant to microbial communities.

Data availability

The following previously published data sets were used
    1. Human Microbiome Project Consortium
    (2010) Human Microbiome Project
    Publicly available at HMPDACC (v35 download of files 6, 9, and 10).
    1. Costello EK
    2. Lauber CL
    3. Hamady M
    4. Fierer N
    5. Gordon JI
    6. Knight R
    (2009) Costello Skin Sites
    Publicly available as part of the FEMS Benchmark dataset (2011) provided Dan Knights.

Article and author information

Author details

  1. Justin D Silverman

    Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3063-2098
  2. Alex D Washburne

    Nicholas School of the Environment, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sayan Mukherjee

    Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lawrence A David

    Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
    For correspondence
    lawrence.david@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3570-4767

Funding

Global Probiotics Council (Young Investigator Grant for Probiotics Research)

  • Lawrence A David

Searle Scholars Program (15-SSP-184 Research Agreement)

  • Lawrence A David

Alfred P. Sloan Foundation (BR2014-003)

  • Lawrence A David

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Silverman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,631
    views
  • 1,731
    downloads
  • 241
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin D Silverman
  2. Alex D Washburne
  3. Sayan Mukherjee
  4. Lawrence A David
(2017)
A phylogenetic transform enhances analysis of compositional microbiota data
eLife 6:e21887.
https://doi.org/10.7554/eLife.21887

Share this article

https://doi.org/10.7554/eLife.21887

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jessica Gray, Von Vergel L Torres ... Ian R Henderson
    Research Article

    Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.

    1. Developmental Biology
    2. Genetics and Genomics
    Nathan D Harry, Christina Zakas
    Research Article

    New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring – using reciprocal crosses – to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.