Sam68/KHDRBS1-dependent NF-κB activation confers radioprotection to the colon epithelium in γ-irradiated mice

  1. Kai Fu
  2. Xin Sun
  3. Eric M Wier
  4. Andrea Hodgson
  5. Ryan P Hobbs
  6. Fengyi Wan  Is a corresponding author
  1. Johns Hopkins University, United States

Abstract

Previously we reported that Src-associated-substrate-during-mitosis-of-68kDa (Sam68/KHDRBS1) is pivotal for DNA damage-stimulated NF-κB transactivation of anti-apoptotic genes (Fu et al., 2016). Here we show that Sam68 is critical for genotoxic stress-induced NF-κB activation in the γ-irradiated colon and animal and that Sam68-dependent NF-κB activation provides radioprotection to colon epithelium in vivo. Sam68 deletion diminishes γ-irradiation-triggered PAR synthesis and NF-κB activation in colon epithelial cells (CECs), thus hampering the expression of anti-apoptotic molecules in situ and facilitating CECs to undergo apoptosis in mice post whole-body γ-irradiation (WBIR). Sam68 knockout mice suffer more severe damage in the colon and succumb more rapidly from acute radiotoxicity than the control mice following WBIR. Our results underscore the critical role of Sam68 in orchestrating genotoxic stress-initiated NF-κB activation signaling in the colon tissue and whole animal and reveal the pathophysiological relevance of Sam68-dependent NF-κB activation in colonic cell survival and recovery from extrinsic DNA damage.

Article and author information

Author details

  1. Kai Fu

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xin Sun

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2424-8011
  3. Eric M Wier

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Hodgson

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ryan P Hobbs

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fengyi Wan

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    For correspondence
    fwan1@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9216-9767

Funding

National Institute of General Medical Sciences (R01GM111682)

  • Fengyi Wan

American Cancer Society (RSG-13-052-01-MPC)

  • Fengyi Wan

National Cancer Institute (T32CA009110)

  • Eric M Wier

National Cancer Institute (T32CA009110)

  • Ryan P Hobbs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to protocol number MO16-H285, approved by the Johns Hopkins University's Animal Care and Use Committee and in direct accordance with the NIH guidelines for housing and care of laboratory animals. Khdrbs1-/- mice and their gender-matched littermate Khdrbs1+/- mice were produced using heterozygous breeding pairs. Mice were maintained in a specific pathogen-free facility and fed autoclaved food and water ad libitum.

Copyright

© 2016, Fu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 945
    views
  • 199
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai Fu
  2. Xin Sun
  3. Eric M Wier
  4. Andrea Hodgson
  5. Ryan P Hobbs
  6. Fengyi Wan
(2016)
Sam68/KHDRBS1-dependent NF-κB activation confers radioprotection to the colon epithelium in γ-irradiated mice
eLife 5:e21957.
https://doi.org/10.7554/eLife.21957

Share this article

https://doi.org/10.7554/eLife.21957

Further reading

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article Updated

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in pancreatic ductal adenocardinoma (PDAC) tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single-cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single-cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

    1. Cancer Biology
    Thi Mong Quynh Pham, Thanh Nhan Nguyen ... Le Son Tran
    Research Article

    In the realm of cancer immunotherapy, the meticulous selection of neoantigens plays a fundamental role in enhancing personalized treatments. Traditionally, this selection process has heavily relied on predicting the binding of peptides to human leukocyte antigens (pHLA). Nevertheless, this approach often overlooks the dynamic interaction between tumor cells and the immune system. In response to this limitation, we have developed an innovative prediction algorithm rooted in machine learning, integrating T cell receptor β chain (TCRβ) profiling data from colorectal cancer (CRC) patients for a more precise neoantigen prioritization. TCRβ sequencing was conducted to profile the TCR repertoire of tumor-infiltrating lymphocytes (TILs) from 28 CRC patients. The data unveiled both intra-tumor and inter-patient heterogeneity in the TCRβ repertoires of CRC patients, likely resulting from the stochastic utilization of V and J segments in response to neoantigens. Our novel combined model integrates pHLA binding information with pHLA-TCR binding to prioritize neoantigens, resulting in heightened specificity and sensitivity compared to models using individual features alone. The efficacy of our proposed model was corroborated through ELISpot assays on long peptides, performed on four CRC patients. These assays demonstrated that neoantigen candidates prioritized by our combined model outperformed predictions made by the established tool NetMHCpan. This comprehensive assessment underscores the significance of integrating pHLA binding with pHLA-TCR binding analysis for more effective immunotherapeutic strategies.