Sam68/KHDRBS1-dependent NF-κB activation confers radioprotection to the colon epithelium in γ-irradiated mice

  1. Kai Fu
  2. Xin Sun
  3. Eric M Wier
  4. Andrea Hodgson
  5. Ryan P Hobbs
  6. Fengyi Wan  Is a corresponding author
  1. Johns Hopkins University, United States

Abstract

Previously we reported that Src-associated-substrate-during-mitosis-of-68kDa (Sam68/KHDRBS1) is pivotal for DNA damage-stimulated NF-κB transactivation of anti-apoptotic genes (Fu et al., 2016). Here we show that Sam68 is critical for genotoxic stress-induced NF-κB activation in the γ-irradiated colon and animal and that Sam68-dependent NF-κB activation provides radioprotection to colon epithelium in vivo. Sam68 deletion diminishes γ-irradiation-triggered PAR synthesis and NF-κB activation in colon epithelial cells (CECs), thus hampering the expression of anti-apoptotic molecules in situ and facilitating CECs to undergo apoptosis in mice post whole-body γ-irradiation (WBIR). Sam68 knockout mice suffer more severe damage in the colon and succumb more rapidly from acute radiotoxicity than the control mice following WBIR. Our results underscore the critical role of Sam68 in orchestrating genotoxic stress-initiated NF-κB activation signaling in the colon tissue and whole animal and reveal the pathophysiological relevance of Sam68-dependent NF-κB activation in colonic cell survival and recovery from extrinsic DNA damage.

Article and author information

Author details

  1. Kai Fu

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xin Sun

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2424-8011
  3. Eric M Wier

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Hodgson

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ryan P Hobbs

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fengyi Wan

    Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
    For correspondence
    fwan1@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9216-9767

Funding

National Institute of General Medical Sciences (R01GM111682)

  • Fengyi Wan

American Cancer Society (RSG-13-052-01-MPC)

  • Fengyi Wan

National Cancer Institute (T32CA009110)

  • Eric M Wier

National Cancer Institute (T32CA009110)

  • Ryan P Hobbs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to protocol number MO16-H285, approved by the Johns Hopkins University's Animal Care and Use Committee and in direct accordance with the NIH guidelines for housing and care of laboratory animals. Khdrbs1-/- mice and their gender-matched littermate Khdrbs1+/- mice were produced using heterozygous breeding pairs. Mice were maintained in a specific pathogen-free facility and fed autoclaved food and water ad libitum.

Reviewing Editor

  1. Tony Hunter, Salk Institute for Biological Studies, United States

Publication history

  1. Received: September 29, 2016
  2. Accepted: December 19, 2016
  3. Accepted Manuscript published: December 20, 2016 (version 1)
  4. Version of Record published: January 4, 2017 (version 2)

Copyright

© 2016, Fu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 888
    Page views
  • 192
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai Fu
  2. Xin Sun
  3. Eric M Wier
  4. Andrea Hodgson
  5. Ryan P Hobbs
  6. Fengyi Wan
(2016)
Sam68/KHDRBS1-dependent NF-κB activation confers radioprotection to the colon epithelium in γ-irradiated mice
eLife 5:e21957.
https://doi.org/10.7554/eLife.21957

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Xiangkun Wu, Hong Yan ... Li Liang
    Research Article

    Colorectal cancer (CRC) remains a challenging and deadly disease with high tumor microenvironment (TME) heterogeneity. Using an integrative multi-omics analysis and artificial intelligence-enabled spatial analysis of whole-slide images, we performed a comprehensive characterization of TME in colorectal cancer (CCCRC). CRC samples were classified into four CCCRC subtypes with distinct TME features, namely, C1 as the proliferative subtype with low immunogenicity; C2 as the immunosuppressed subtype with the terminally exhausted immune characteristics; C3 as the immune-excluded subtype with the distinct upregulation of stromal components and a lack of T cell infiltration in the tumor core; and C4 as the immunomodulatory subtype with the remarkable upregulation of anti-tumor immune components. The four CCCRC subtypes had distinct histopathologic and molecular characteristics, therapeutic efficacy, and prognosis. We found that the C1 subtype may be suitable for chemotherapy and cetuximab, the C2 subtype may benefit from a combination of chemotherapy and bevacizumab, the C3 subtype has increased sensitivity to the WNT pathway inhibitor WIKI4, and the C4 subtype is a potential candidate for immune checkpoint blockade treatment. Importantly, we established a simple gene classifier for accurate identification of each CCCRC subtype. Collectively our integrative analysis ultimately established a holistic framework to thoroughly dissect the TME of CRC, and the CCCRC classification system with high biological interpretability may contribute to biomarker discovery and future clinical trial design.

    1. Cancer Biology
    Jiangfei Chen, Kunal Baxi ... Myron S Ignatius
    Research Article

    In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153D and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153D unexpectedly also predisposes to hedgehog expressing medulloblastomas in the kRASG12D-driven ERMS-model.