Operon mRNAs are organized into ORF-centric structures that predict translation efficiency

  1. David H Burkhardt
  2. Silvi Rouskin
  3. Yan Zhang
  4. Gene-Wei Li  Is a corresponding author
  5. Jonathan S Weissman  Is a corresponding author
  6. Carol A Gross  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Howard Hughes Medical Institute, University of California, San Francisco, United States
  3. Massachusetts Institute of Technology, United States

Abstract

Bacterial mRNAs are organized into operons consisting of discrete open reading frames (ORFs) in a single polycistronic mRNA. Individual ORFs on the mRNA are differentially translated, with rates varying as much as 100-fold. The signals controlling differential translation are poorly understood. Our genome-wide mRNA secondary structure analysis indicated that operonic mRNAs are comprised of ORF-wide units of secondary structure that vary across ORF boundaries such that adjacent ORFs on the same mRNA molecule are structurally distinct. ORF translation rate is strongly correlated with its mRNA structure in vivo, and correlation persists, albeit in a reduced form, with its structure when translation is inhibited and with that of in vitro refolded mRNA. These data suggests that intrinsic ORF mRNA structure encodes a rough blueprint for translation efficiency. This structure is then amplified by translation, in a self-reinforcing loop, to provide the structure that ultimately specifies the translation of each ORF.

Data availability

The following data sets were generated

Article and author information

Author details

  1. David H Burkhardt

    Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Silvi Rouskin

    Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yan Zhang

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5440-1414
  4. Gene-Wei Li

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    gwli@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan S Weissman

    Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    Jonathan.Weissman@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2445-670X
  6. Carol A Gross

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    For correspondence
    cgrossucsf@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5595-9732

Funding

Howard Hughes Medical Institute

  • Jonathan S Weissman

National Institutes of Health

  • David H Burkhardt
  • Yan Zhang
  • Carol A Gross

Helen Hay Whitney Foundation

  • Gene-Wei Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rachel Green, Johns Hopkins School of Medicine, United States

Version history

  1. Received: October 3, 2016
  2. Accepted: January 27, 2017
  3. Accepted Manuscript published: January 31, 2017 (version 1)
  4. Version of Record published: February 20, 2017 (version 2)

Copyright

© 2017, Burkhardt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,793
    views
  • 1,377
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David H Burkhardt
  2. Silvi Rouskin
  3. Yan Zhang
  4. Gene-Wei Li
  5. Jonathan S Weissman
  6. Carol A Gross
(2017)
Operon mRNAs are organized into ORF-centric structures that predict translation efficiency
eLife 6:e22037.
https://doi.org/10.7554/eLife.22037

Share this article

https://doi.org/10.7554/eLife.22037

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.