Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging

  1. Meiting Chen
  2. Ziyi Zhao
  3. Jin Yang
  4. Kai Peng
  5. Matthew A.B. Baker
  6. Fan Bai  Is a corresponding author
  7. Chien-Jung Lo  Is a corresponding author
  1. National Central University, Taiwan, Republic of China
  2. Peking University, China
  3. University of New South Wales, Australia

Abstract

Bacterial flagella are extracellular filaments that drive swimming in bacteria. During its assembly, flagellins are transported unfolded through the central channel in the flagellum to the growing tip. Here we applied in vivo fluorescent imaging to monitor in real time the Vibrio alginolyticus polar flagella growth. The flagellar growth rate is found to be highly length-dependent. Initially, the flagellum grows at a constant rate (50nm/min) when shorter than 1500nm. The growth rate decays sharply when the flagellum grows longer. We modeled flagellin transport inside the channel as a one-dimensional diffusive process with an injection force at its base. When the flagellum is short, its growth rate is determined by the loading speed at the base. Only when the flagellum grows longer does diffusion of flagellin become the rate-limiting step, dramatically reducing the growth rate. Our results shed new light on the dynamic building process of this complex extracellular structure.

Article and author information

Author details

  1. Meiting Chen

    Physics, National Central University, Jhongli, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ziyi Zhao

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jin Yang

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Kai Peng

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew A.B. Baker

    EMBL Australia Node for Single Molecule Science, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Bai

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    For correspondence
    fbai@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Chien-Jung Lo

    Phyiscs, National Central University, Jhongli, Taiwan, Republic of China
    For correspondence
    cjlo@phy.ncu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8078-4970

Funding

Ministry of Science and Technology, Taiwan (MOST-103-2112-M-008-010-MY3)

  • Chien-Jung Lo

National Natural Science Foundation of China (No. 31370847,No.31327901)

  • Fan Bai

Human Frontier Science Program (RGP0041/2015)

  • Fan Bai
  • Chien-Jung Lo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M Berry, University of Oxford, United Kingdom

Version history

  1. Received: October 7, 2016
  2. Accepted: January 15, 2017
  3. Accepted Manuscript published: January 18, 2017 (version 1)
  4. Accepted Manuscript updated: January 19, 2017 (version 2)
  5. Version of Record published: February 9, 2017 (version 3)

Copyright

© 2017, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,480
    views
  • 498
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meiting Chen
  2. Ziyi Zhao
  3. Jin Yang
  4. Kai Peng
  5. Matthew A.B. Baker
  6. Fan Bai
  7. Chien-Jung Lo
(2017)
Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging
eLife 6:e22140.
https://doi.org/10.7554/eLife.22140

Share this article

https://doi.org/10.7554/eLife.22140

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.