Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging

  1. Meiting Chen
  2. Ziyi Zhao
  3. Jin Yang
  4. Kai Peng
  5. Matthew A.B. Baker
  6. Fan Bai  Is a corresponding author
  7. Chien-Jung Lo  Is a corresponding author
  1. National Central University, Taiwan, Republic of China
  2. Peking University, China
  3. University of New South Wales, Australia

Abstract

Bacterial flagella are extracellular filaments that drive swimming in bacteria. During its assembly, flagellins are transported unfolded through the central channel in the flagellum to the growing tip. Here we applied in vivo fluorescent imaging to monitor in real time the Vibrio alginolyticus polar flagella growth. The flagellar growth rate is found to be highly length-dependent. Initially, the flagellum grows at a constant rate (50nm/min) when shorter than 1500nm. The growth rate decays sharply when the flagellum grows longer. We modeled flagellin transport inside the channel as a one-dimensional diffusive process with an injection force at its base. When the flagellum is short, its growth rate is determined by the loading speed at the base. Only when the flagellum grows longer does diffusion of flagellin become the rate-limiting step, dramatically reducing the growth rate. Our results shed new light on the dynamic building process of this complex extracellular structure.

Article and author information

Author details

  1. Meiting Chen

    Physics, National Central University, Jhongli, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ziyi Zhao

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jin Yang

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Kai Peng

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew A.B. Baker

    EMBL Australia Node for Single Molecule Science, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Bai

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    For correspondence
    fbai@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Chien-Jung Lo

    Phyiscs, National Central University, Jhongli, Taiwan, Republic of China
    For correspondence
    cjlo@phy.ncu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8078-4970

Funding

Ministry of Science and Technology, Taiwan (MOST-103-2112-M-008-010-MY3)

  • Chien-Jung Lo

National Natural Science Foundation of China (No. 31370847,No.31327901)

  • Fan Bai

Human Frontier Science Program (RGP0041/2015)

  • Fan Bai
  • Chien-Jung Lo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,581
    views
  • 506
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meiting Chen
  2. Ziyi Zhao
  3. Jin Yang
  4. Kai Peng
  5. Matthew A.B. Baker
  6. Fan Bai
  7. Chien-Jung Lo
(2017)
Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging
eLife 6:e22140.
https://doi.org/10.7554/eLife.22140

Share this article

https://doi.org/10.7554/eLife.22140

Further reading

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.