Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging

  1. Meiting Chen
  2. Ziyi Zhao
  3. Jin Yang
  4. Kai Peng
  5. Matthew A.B. Baker
  6. Fan Bai  Is a corresponding author
  7. Chien-Jung Lo  Is a corresponding author
  1. National Central University, Taiwan, Republic of China
  2. Peking University, China
  3. University of New South Wales, Australia

Abstract

Bacterial flagella are extracellular filaments that drive swimming in bacteria. During its assembly, flagellins are transported unfolded through the central channel in the flagellum to the growing tip. Here we applied in vivo fluorescent imaging to monitor in real time the Vibrio alginolyticus polar flagella growth. The flagellar growth rate is found to be highly length-dependent. Initially, the flagellum grows at a constant rate (50nm/min) when shorter than 1500nm. The growth rate decays sharply when the flagellum grows longer. We modeled flagellin transport inside the channel as a one-dimensional diffusive process with an injection force at its base. When the flagellum is short, its growth rate is determined by the loading speed at the base. Only when the flagellum grows longer does diffusion of flagellin become the rate-limiting step, dramatically reducing the growth rate. Our results shed new light on the dynamic building process of this complex extracellular structure.

Article and author information

Author details

  1. Meiting Chen

    Physics, National Central University, Jhongli, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Ziyi Zhao

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jin Yang

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Kai Peng

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew A.B. Baker

    EMBL Australia Node for Single Molecule Science, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Bai

    Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, China
    For correspondence
    fbai@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Chien-Jung Lo

    Phyiscs, National Central University, Jhongli, Taiwan, Republic of China
    For correspondence
    cjlo@phy.ncu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8078-4970

Funding

Ministry of Science and Technology, Taiwan (MOST-103-2112-M-008-010-MY3)

  • Chien-Jung Lo

National Natural Science Foundation of China (No. 31370847,No.31327901)

  • Fan Bai

Human Frontier Science Program (RGP0041/2015)

  • Fan Bai
  • Chien-Jung Lo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,617
    views
  • 509
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meiting Chen
  2. Ziyi Zhao
  3. Jin Yang
  4. Kai Peng
  5. Matthew A.B. Baker
  6. Fan Bai
  7. Chien-Jung Lo
(2017)
Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging
eLife 6:e22140.
https://doi.org/10.7554/eLife.22140

Share this article

https://doi.org/10.7554/eLife.22140

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.