p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway

  1. Pauline Jeannot
  2. Ada Nowosad
  3. Renaud T Perchey
  4. Caroline Callot
  5. Evangeline Bennana
  6. Takanori Katsube
  7. Patrick Mayeux
  8. François Guillonneau
  9. Stéphane Manenti
  10. Arnaud Besson  Is a corresponding author
  1. INSERM, France
  2. National Institute of Radiological Sciences, Japan
  3. French Institute of Health and Medical Research, France

Abstract

p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.

Article and author information

Author details

  1. Pauline Jeannot

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ada Nowosad

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Renaud T Perchey

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline Callot

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Evangeline Bennana

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Takanori Katsube

    Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Mayeux

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. François Guillonneau

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Stéphane Manenti

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Arnaud Besson

    CRCT UMR 1037 INSERM-Universite Paul Sabatier, French Institute of Health and Medical Research, Toulouse cedex 1, France
    For correspondence
    arnaud.besson@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9599-3943

Funding

Ligue Nationale Contre le Cancer

  • Renaud T Perchey
  • Stéphane Manenti
  • Arnaud Besson

Ministere de l'enseignement superieur et de la recherche

  • Pauline Jeannot
  • Ada Nowosad

INSERM

  • Evangeline Bennana
  • Patrick Mayeux
  • François Guillonneau
  • Stéphane Manenti
  • Arnaud Besson

CNRS

  • Stéphane Manenti
  • Arnaud Besson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Jeannot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,753
    views
  • 501
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pauline Jeannot
  2. Ada Nowosad
  3. Renaud T Perchey
  4. Caroline Callot
  5. Evangeline Bennana
  6. Takanori Katsube
  7. Patrick Mayeux
  8. François Guillonneau
  9. Stéphane Manenti
  10. Arnaud Besson
(2017)
p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway
eLife 6:e22207.
https://doi.org/10.7554/eLife.22207

Share this article

https://doi.org/10.7554/eLife.22207

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Susanne Tilk, Judith Frydman ... Dmitri A Petrov
    Research Article

    In asexual populations that don’t undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.