p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway

  1. Pauline Jeannot
  2. Ada Nowosad
  3. Renaud T Perchey
  4. Caroline Callot
  5. Evangeline Bennana
  6. Takanori Katsube
  7. Patrick Mayeux
  8. François Guillonneau
  9. Stéphane Manenti
  10. Arnaud Besson  Is a corresponding author
  1. INSERM, France
  2. National Institute of Radiological Sciences, Japan
  3. French Institute of Health and Medical Research, France

Abstract

p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.

Article and author information

Author details

  1. Pauline Jeannot

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ada Nowosad

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Renaud T Perchey

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline Callot

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Evangeline Bennana

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Takanori Katsube

    Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Mayeux

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. François Guillonneau

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Stéphane Manenti

    Cancer Research Center of Toulouse, INSERM, Toulouse,, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Arnaud Besson

    CRCT UMR 1037 INSERM-Universite Paul Sabatier, French Institute of Health and Medical Research, Toulouse cedex 1, France
    For correspondence
    arnaud.besson@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9599-3943

Funding

Ligue Nationale Contre le Cancer

  • Renaud T Perchey
  • Stéphane Manenti
  • Arnaud Besson

Ministere de l'enseignement superieur et de la recherche

  • Pauline Jeannot
  • Ada Nowosad

INSERM

  • Evangeline Bennana
  • Patrick Mayeux
  • François Guillonneau
  • Stéphane Manenti
  • Arnaud Besson

CNRS

  • Stéphane Manenti
  • Arnaud Besson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Jeannot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,756
    views
  • 501
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pauline Jeannot
  2. Ada Nowosad
  3. Renaud T Perchey
  4. Caroline Callot
  5. Evangeline Bennana
  6. Takanori Katsube
  7. Patrick Mayeux
  8. François Guillonneau
  9. Stéphane Manenti
  10. Arnaud Besson
(2017)
p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway
eLife 6:e22207.
https://doi.org/10.7554/eLife.22207

Share this article

https://doi.org/10.7554/eLife.22207

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.

    1. Cancer Biology
    Ke Ning, Yuanyuan Xie ... Ling Yu
    Research Article

    For traditional laboratory microscopy observation, the multi-dimensional, real-time, in situ observation of three-dimensional (3D) tumor spheroids has always been the pain point in cell spheroid observation. In this study, we designed a side-view observation petri dish/device that reflects light, enabling in situ observation of the 3D morphology of cell spheroids using conventional inverted laboratory microscopes. We used a 3D-printed handle and frame to support a first-surface mirror, positioning the device within a cell culture petri dish to image cell spheroid samples. The imaging conditions, such as the distance between the mirror and the 3D spheroids, the light source, and the impact of the culture medium, were systematically studied to validate the in situ side-view observation. The results proved that placing the surface mirror adjacent to the spheroids enables non-destructive in situ real-time tracking of tumor spheroid formation, migration, and fusion dynamics. The correlation between spheroid thickness and dark core appearance under light microscopy and the therapeutic effects of chemotherapy doxorubicin and natural killer cells on spheroids’ 3D structure was investigated.